Spaces:
Sleeping
Sleeping
File size: 14,171 Bytes
503aad2 4dd424d 503aad2 4dd424d 503aad2 244cbec 503aad2 4dd424d 503aad2 4dd424d 5ef0b6a 5ac52b0 392758b 5ef0b6a 6e27dd8 503aad2 1bf2e1f 503aad2 83ed4d1 503aad2 83ed4d1 503aad2 83ed4d1 503aad2 83ed4d1 503aad2 83ed4d1 503aad2 1bf2e1f 503aad2 47eff8b 503aad2 47eff8b 503aad2 7c0a7ae 503aad2 5a5c81b 503aad2 7c0a7ae 392758b 7c0a7ae 392758b 7c0a7ae 402cfa6 7c0a7ae 503aad2 3378b23 503aad2 3378b23 503aad2 98a9a5f 24d1b6f 98a9a5f bf1521f 98a9a5f 402cfa6 bf1521f 98a9a5f bf1521f 98a9a5f 9de24de 98a9a5f 503aad2 98a9a5f 402cfa6 98a9a5f 392758b 5c20978 503aad2 5a5c81b 503aad2 1bf2e1f 503aad2 1bf2e1f 503aad2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
from __future__ import annotations
import contextlib
import json
import logging
from typing import Any, Dict, Generator, Iterable, List, Optional, Tuple, Type
import pandas as pd
import sqlalchemy
from langchain.docstore.document import Document
from langchain.schema.embeddings import Embeddings
from langchain.vectorstores.base import VectorStore
from sqlalchemy import delete, text
from sqlalchemy.orm import Session
from utils import str_to_list
from models.distance import DistanceStrategy
from model import Article
DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.COSINE
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
def _results_to_docs(docs_and_scores: Any) -> List[Document]:
"""Return docs from docs and scores."""
return [doc for doc, _ in docs_and_scores]
class CustomVectorStore(VectorStore):
"""`Postgres`/`PGVector` vector store.
To use, you should have the ``pgvector`` python package installed.
Args:
connection: Postgres connection string.
embedding_function: Any embedding function implementing
`langchain.embeddings.base.Embeddings` interface.
table_name: The name of the collection to use. (default: langchain)
NOTE: This is not the name of the table, but the name of the collection.
The tables will be created when initializing the store (if not exists)
So, make sure the user has the right permissions to create tables.
distance_strategy: The distance strategy to use. (default: COSINE)
pre_delete_collection: If True, will delete the collection if it exists.
(default: False). Useful for testing.
Example:
.. code-block:: python
from langchain.vectorstores import PGVector
from langchain.embeddings.openai import OpenAIEmbeddings
COLLECTION_NAME = "state_of_the_union_test"
embeddings = OpenAIEmbeddings()
vectorestore = PGVector.from_documents(
embedding=embeddings,
documents=docs,
table_name=COLLECTION_NAME,
connection=connection,
)
"""
def __init__(
self,
connection: sqlalchemy.engine.Connection,
embedding_function: Embeddings,
table_name: str,
column_name: str,
collection_metadata: Optional[dict] = None,
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
pre_delete_collection: bool = False,
logger: Optional[logging.Logger] = None,
) -> None:
self._conn = connection
self.embedding_function = embedding_function
self.table_name = table_name
self.column_name = column_name
self.collection_metadata = collection_metadata
self._distance_strategy = distance_strategy
self.pre_delete_collection = pre_delete_collection
self.logger = logger or logging.getLogger(__name__)
self.__post_init__()
def __post_init__(
self,
) -> None:
"""
Initialize the store.
"""
# self._conn = self.connect()
self.EmbeddingStore = Article
@property
def embeddings(self) -> Embeddings:
return self.embedding_function
@contextlib.contextmanager
def _make_session(self) -> Generator[Session, None, None]:
"""Create a context manager for the session, bind to _conn string."""
yield Session(self._conn)
def delete(
self,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
"""Delete vectors by ids.
Args:
ids: List of ids to delete.
"""
with Session(self._conn) as session:
if ids is not None:
self.logger.debug(
"Trying to delete vectors by ids (represented by the model "
"using the custom ids field)"
)
stmt = delete(self.EmbeddingStore).where(
self.EmbeddingStore.custom_id.in_(ids)
)
session.execute(stmt)
session.commit()
@classmethod
def __from(
cls,
texts: List[str],
embeddings: List[List[float]],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
table_name: str = "article",
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
connection_string: Optional[str] = None,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> CustomVectorStore:
if not metadatas:
metadatas = [{} for _ in texts]
if connection_string is None:
connection_string = cls.get_connection_string(kwargs)
store = cls(
connection_string=connection_string,
table_name=table_name,
embedding_function=embedding,
distance_strategy=distance_strategy,
pre_delete_collection=pre_delete_collection,
**kwargs,
)
store.add_embeddings(
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
)
return store
def add_embeddings(
self,
texts: Iterable[str],
embeddings: List[List[float]],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Add embeddings to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
embeddings: List of list of embedding vectors.
metadatas: List of metadatas associated with the texts.
kwargs: vectorstore specific parameters
"""
if not metadatas:
metadatas = [{} for _ in texts]
with Session(self._conn) as session:
for txt, metadata, embedding, id in zip(texts, metadatas, embeddings, ids):
embedding_store = self.EmbeddingStore(
embedding=embedding,
document=txt,
cmetadata=metadata,
custom_id=id,
)
session.add(embedding_store)
session.commit()
return ids
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
kwargs: vectorstore specific parameters
Returns:
List of ids from adding the texts into the vectorstore.
"""
embeddings = self.embedding_function.embed_documents(list(texts))
return self.add_embeddings(
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
)
def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Document]:
"""Run similarity search with PGVector with distance.
Args:
query (str): Query text to search for.
k (int): Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents most similar to the query.
"""
embedding = self.embedding_function.embed_query(text=query)
return self.similarity_search_by_vector(
embedding=embedding,
k=k,
)
def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents most similar to the query and score for each.
"""
embedding = self.embedding_function.embed_query(query)
docs = self.similarity_search_with_score_by_vector(embedding=embedding, k=k)
return docs
@property
def distance_strategy(self) -> Any:
if self._distance_strategy == DistanceStrategy.EUCLIDEAN:
return self.EmbeddingStore.embedding.l2_distance
elif self._distance_strategy == DistanceStrategy.COSINE:
return self.EmbeddingStore.embedding.cosine_distance
elif self._distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
return self.EmbeddingStore.embedding.max_inner_product
else:
raise ValueError(
f"Got unexpected value for distance: {self._distance_strategy}. "
f"Should be one of {', '.join([ds.value for ds in DistanceStrategy])}."
)
def similarity_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
) -> List[Tuple[Document, float]]:
results = self.__query_collection(embedding=embedding, k=k)
return self._results_to_docs_and_scores(results)
def _results_to_docs_and_scores(self, results: Any) -> List[Tuple[Document, float]]:
"""Return docs and scores from results."""
docs = [
(
Document(
page_content=json.dumps(
{
"abstract": result["abstract"][0],
"id": result["id"],
"title": result["title"][0],
"authors": result["authors"],
"doi": result["doi"],
"hal_id": result["hal_id"],
"keywords": result["keywords"],
"distance": result["distance"],
}
),
),
result["distance"] if self.embedding_function is not None else None,
)
for result in results
]
return docs
def __query_collection(
self,
embedding: List[float],
k: int = 4,
) -> List[Any]:
"""Query the collection."""
with Session(self._conn) as session:
results = session.execute(
text(
f"""
select
a.id,
a.title_en,
a.doi,
a.hal_id,
a.abstract_en,
string_agg(distinct keyword."name", ',') as keywords,
string_agg(distinct author."name", ',') as authors,
abstract_embedding_en <-> '{str(embedding)}' as distance
from article a
left join article_keyword ON article_keyword.article_id = a.id
left join keyword on article_keyword.keyword_id = keyword.id
left join article_author ON article_author.article_id = a.id
left join author on author.id = article_author.author_id
where
abstract_en != '' and
abstract_en != 'None'
GROUP BY a.id
ORDER BY distance
LIMIT {k};
"""
)
)
results = results.fetchall()
results = pd.DataFrame(
results,
columns=[
"id",
"title",
"doi",
"hal_id",
"abstract",
"keywords",
"authors",
"distance",
],
)
results["abstract"] = results["abstract"].apply(str_to_list)
results["title"] = results["title"].apply(str_to_list)
results = results.to_dict(orient="records")
return results
def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents most similar to the query vector.
"""
docs_and_scores = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k
)
return _results_to_docs(docs_and_scores)
@classmethod
def from_texts(
cls: Type[CustomVectorStore],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
table_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
ids: Optional[List[str]] = None,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> CustomVectorStore:
"""
Return VectorStore initialized from texts and embeddings.
Postgres connection string is required
"Either pass it as a parameter
or set the PGVECTOR_CONNECTION_STRING environment variable.
"""
embeddings = embedding.embed_documents(list(texts))
return cls.__from(
texts,
embeddings,
embedding,
metadatas=metadatas,
ids=ids,
table_name=table_name,
distance_strategy=distance_strategy,
pre_delete_collection=pre_delete_collection,
**kwargs,
)
|