Léo Bourrel commited on
Commit
5a5c81b
·
1 Parent(s): fc40941

feat: remove fllter argument never used

Browse files
Files changed (1) hide show
  1. custom_pgvector.py +3 -7
custom_pgvector.py CHANGED
@@ -292,7 +292,6 @@ class CustomPGVector(VectorStore):
292
  return self.similarity_search_by_vector(
293
  embedding=embedding,
294
  k=k,
295
- filter=filter,
296
  )
297
 
298
  def similarity_search_with_score(
@@ -313,7 +312,7 @@ class CustomPGVector(VectorStore):
313
  """
314
  embedding = self.embedding_function.embed_query(query)
315
  docs = self.similarity_search_with_score_by_vector(
316
- embedding=embedding, k=k, filter=filter
317
  )
318
  return docs
319
 
@@ -335,9 +334,8 @@ class CustomPGVector(VectorStore):
335
  self,
336
  embedding: List[float],
337
  k: int = 4,
338
- filter: Optional[dict] = None,
339
  ) -> List[Tuple[Document, float]]:
340
- results = self.__query_collection(embedding=embedding, k=k, filter=filter)
341
 
342
  return self._results_to_docs_and_scores(results)
343
 
@@ -366,7 +364,6 @@ class CustomPGVector(VectorStore):
366
  self,
367
  embedding: List[float],
368
  k: int = 4,
369
- filter: Optional[Dict[str, str]] = None,
370
  ) -> List[Any]:
371
  """Query the collection."""
372
  with Session(self._conn) as session:
@@ -401,7 +398,6 @@ class CustomPGVector(VectorStore):
401
  self,
402
  embedding: List[float],
403
  k: int = 4,
404
- filter: Optional[dict] = None,
405
  **kwargs: Any,
406
  ) -> List[Document]:
407
  """Return docs most similar to embedding vector.
@@ -415,7 +411,7 @@ class CustomPGVector(VectorStore):
415
  List of Documents most similar to the query vector.
416
  """
417
  docs_and_scores = self.similarity_search_with_score_by_vector(
418
- embedding=embedding, k=k, filter=filter
419
  )
420
  return _results_to_docs(docs_and_scores)
421
 
 
292
  return self.similarity_search_by_vector(
293
  embedding=embedding,
294
  k=k,
 
295
  )
296
 
297
  def similarity_search_with_score(
 
312
  """
313
  embedding = self.embedding_function.embed_query(query)
314
  docs = self.similarity_search_with_score_by_vector(
315
+ embedding=embedding, k=k
316
  )
317
  return docs
318
 
 
334
  self,
335
  embedding: List[float],
336
  k: int = 4,
 
337
  ) -> List[Tuple[Document, float]]:
338
+ results = self.__query_collection(embedding=embedding, k=k)
339
 
340
  return self._results_to_docs_and_scores(results)
341
 
 
364
  self,
365
  embedding: List[float],
366
  k: int = 4,
 
367
  ) -> List[Any]:
368
  """Query the collection."""
369
  with Session(self._conn) as session:
 
398
  self,
399
  embedding: List[float],
400
  k: int = 4,
 
401
  **kwargs: Any,
402
  ) -> List[Document]:
403
  """Return docs most similar to embedding vector.
 
411
  List of Documents most similar to the query vector.
412
  """
413
  docs_and_scores = self.similarity_search_with_score_by_vector(
414
+ embedding=embedding, k=k
415
  )
416
  return _results_to_docs(docs_and_scores)
417