Spaces:
Sleeping
Sleeping
Léo Bourrel
commited on
Commit
·
5ef0b6a
1
Parent(s):
50058a6
cleant: split article model
Browse files- custom_pgvector.py +3 -20
- model.py +18 -0
custom_pgvector.py
CHANGED
@@ -9,21 +9,16 @@ import pandas as pd
|
|
9 |
import sqlalchemy
|
10 |
from langchain.docstore.document import Document
|
11 |
from langchain.schema.embeddings import Embeddings
|
12 |
-
from langchain.utils import get_from_dict_or_env
|
13 |
from langchain.vectorstores.base import VectorStore
|
14 |
-
from pgvector.sqlalchemy import Vector
|
15 |
from sqlalchemy import delete, text
|
16 |
-
from sqlalchemy.orm import Session
|
17 |
|
18 |
from utils import str_to_list
|
19 |
-
from distance import DistanceStrategy
|
20 |
-
|
21 |
|
22 |
DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.COSINE
|
23 |
|
24 |
-
Base = declarative_base() # type: Any
|
25 |
-
|
26 |
-
|
27 |
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
|
28 |
|
29 |
|
@@ -32,18 +27,6 @@ def _results_to_docs(docs_and_scores: Any) -> List[Document]:
|
|
32 |
return [doc for doc, _ in docs_and_scores]
|
33 |
|
34 |
|
35 |
-
class Article(Base):
|
36 |
-
"""Embedding store."""
|
37 |
-
|
38 |
-
__tablename__ = "article"
|
39 |
-
|
40 |
-
id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True, nullable=False)
|
41 |
-
title = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
42 |
-
abstract = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
43 |
-
embedding: Vector = sqlalchemy.Column("abstract_embedding", Vector(None))
|
44 |
-
doi = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
45 |
-
|
46 |
-
|
47 |
class CustomPGVector(VectorStore):
|
48 |
"""`Postgres`/`PGVector` vector store.
|
49 |
|
|
|
9 |
import sqlalchemy
|
10 |
from langchain.docstore.document import Document
|
11 |
from langchain.schema.embeddings import Embeddings
|
|
|
12 |
from langchain.vectorstores.base import VectorStore
|
|
|
13 |
from sqlalchemy import delete, text
|
14 |
+
from sqlalchemy.orm import Session
|
15 |
|
16 |
from utils import str_to_list
|
17 |
+
from models.distance import DistanceStrategy
|
18 |
+
from model import Base, Article
|
19 |
|
20 |
DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.COSINE
|
21 |
|
|
|
|
|
|
|
22 |
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
|
23 |
|
24 |
|
|
|
27 |
return [doc for doc, _ in docs_and_scores]
|
28 |
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
class CustomPGVector(VectorStore):
|
31 |
"""`Postgres`/`PGVector` vector store.
|
32 |
|
model.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sqlalchemy
|
2 |
+
|
3 |
+
from sqlalchemy.orm import declarative_base
|
4 |
+
from pgvector.sqlalchemy import Vector
|
5 |
+
|
6 |
+
Base = declarative_base() # type: Any
|
7 |
+
|
8 |
+
|
9 |
+
class Article(Base):
|
10 |
+
"""Embedding store."""
|
11 |
+
|
12 |
+
__tablename__ = "article"
|
13 |
+
|
14 |
+
id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True, nullable=False)
|
15 |
+
title = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
16 |
+
abstract = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
17 |
+
embedding: Vector = sqlalchemy.Column("abstract_embedding", Vector(None))
|
18 |
+
doi = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|