Léo Bourrel commited on
Commit
5ef0b6a
·
1 Parent(s): 50058a6

cleant: split article model

Browse files
Files changed (2) hide show
  1. custom_pgvector.py +3 -20
  2. model.py +18 -0
custom_pgvector.py CHANGED
@@ -9,21 +9,16 @@ import pandas as pd
9
  import sqlalchemy
10
  from langchain.docstore.document import Document
11
  from langchain.schema.embeddings import Embeddings
12
- from langchain.utils import get_from_dict_or_env
13
  from langchain.vectorstores.base import VectorStore
14
- from pgvector.sqlalchemy import Vector
15
  from sqlalchemy import delete, text
16
- from sqlalchemy.orm import Session, declarative_base
17
 
18
  from utils import str_to_list
19
- from distance import DistanceStrategy
20
-
21
 
22
  DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.COSINE
23
 
24
- Base = declarative_base() # type: Any
25
-
26
-
27
  _LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
28
 
29
 
@@ -32,18 +27,6 @@ def _results_to_docs(docs_and_scores: Any) -> List[Document]:
32
  return [doc for doc, _ in docs_and_scores]
33
 
34
 
35
- class Article(Base):
36
- """Embedding store."""
37
-
38
- __tablename__ = "article"
39
-
40
- id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True, nullable=False)
41
- title = sqlalchemy.Column(sqlalchemy.String, nullable=True)
42
- abstract = sqlalchemy.Column(sqlalchemy.String, nullable=True)
43
- embedding: Vector = sqlalchemy.Column("abstract_embedding", Vector(None))
44
- doi = sqlalchemy.Column(sqlalchemy.String, nullable=True)
45
-
46
-
47
  class CustomPGVector(VectorStore):
48
  """`Postgres`/`PGVector` vector store.
49
 
 
9
  import sqlalchemy
10
  from langchain.docstore.document import Document
11
  from langchain.schema.embeddings import Embeddings
 
12
  from langchain.vectorstores.base import VectorStore
 
13
  from sqlalchemy import delete, text
14
+ from sqlalchemy.orm import Session
15
 
16
  from utils import str_to_list
17
+ from models.distance import DistanceStrategy
18
+ from model import Base, Article
19
 
20
  DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.COSINE
21
 
 
 
 
22
  _LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
23
 
24
 
 
27
  return [doc for doc, _ in docs_and_scores]
28
 
29
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  class CustomPGVector(VectorStore):
31
  """`Postgres`/`PGVector` vector store.
32
 
model.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sqlalchemy
2
+
3
+ from sqlalchemy.orm import declarative_base
4
+ from pgvector.sqlalchemy import Vector
5
+
6
+ Base = declarative_base() # type: Any
7
+
8
+
9
+ class Article(Base):
10
+ """Embedding store."""
11
+
12
+ __tablename__ = "article"
13
+
14
+ id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True, nullable=False)
15
+ title = sqlalchemy.Column(sqlalchemy.String, nullable=True)
16
+ abstract = sqlalchemy.Column(sqlalchemy.String, nullable=True)
17
+ embedding: Vector = sqlalchemy.Column("abstract_embedding", Vector(None))
18
+ doi = sqlalchemy.Column(sqlalchemy.String, nullable=True)