Spaces:
Sleeping
Sleeping
Commit
·
503aad2
1
Parent(s):
c3b9b9a
feat: Override PGVector with custom source
Browse files- custom_pgvector.py +789 -0
custom_pgvector.py
ADDED
@@ -0,0 +1,789 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import asyncio
|
4 |
+
import contextlib
|
5 |
+
import enum
|
6 |
+
import logging
|
7 |
+
from functools import partial
|
8 |
+
from typing import (
|
9 |
+
TYPE_CHECKING,
|
10 |
+
Any,
|
11 |
+
Callable,
|
12 |
+
Dict,
|
13 |
+
Generator,
|
14 |
+
Iterable,
|
15 |
+
List,
|
16 |
+
Optional,
|
17 |
+
Tuple,
|
18 |
+
Type,
|
19 |
+
)
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import sqlalchemy
|
23 |
+
from langchain.docstore.document import Document
|
24 |
+
from langchain.schema.embeddings import Embeddings
|
25 |
+
from langchain.utils import get_from_dict_or_env
|
26 |
+
from langchain.vectorstores.base import VectorStore
|
27 |
+
from langchain.vectorstores.pgvector import BaseModel
|
28 |
+
from langchain.vectorstores.utils import maximal_marginal_relevance
|
29 |
+
from pgvector.sqlalchemy import Vector
|
30 |
+
from sqlalchemy import delete
|
31 |
+
from sqlalchemy.orm import Session, declarative_base, relationship
|
32 |
+
|
33 |
+
if TYPE_CHECKING:
|
34 |
+
from langchain.vectorstores._pgvector_data_models import CollectionStore
|
35 |
+
|
36 |
+
|
37 |
+
class DistanceStrategy(str, enum.Enum):
|
38 |
+
"""Enumerator of the Distance strategies."""
|
39 |
+
|
40 |
+
EUCLIDEAN = "l2"
|
41 |
+
COSINE = "cosine"
|
42 |
+
MAX_INNER_PRODUCT = "inner"
|
43 |
+
|
44 |
+
|
45 |
+
DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.COSINE
|
46 |
+
|
47 |
+
Base = declarative_base() # type: Any
|
48 |
+
|
49 |
+
|
50 |
+
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
|
51 |
+
|
52 |
+
|
53 |
+
def _results_to_docs(docs_and_scores: Any) -> List[Document]:
|
54 |
+
"""Return docs from docs and scores."""
|
55 |
+
return [doc for doc, _ in docs_and_scores]
|
56 |
+
|
57 |
+
|
58 |
+
class Article(Base):
|
59 |
+
"""Embedding store."""
|
60 |
+
|
61 |
+
__tablename__ = "article"
|
62 |
+
|
63 |
+
id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True, nullable=False)
|
64 |
+
title = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
65 |
+
abstract = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
66 |
+
embedding: Vector = sqlalchemy.Column("abstract_embedding", Vector(None))
|
67 |
+
doi = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
68 |
+
|
69 |
+
|
70 |
+
class CustomPGVector(VectorStore):
|
71 |
+
"""`Postgres`/`PGVector` vector store.
|
72 |
+
|
73 |
+
To use, you should have the ``pgvector`` python package installed.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
connection_string: Postgres connection string.
|
77 |
+
embedding_function: Any embedding function implementing
|
78 |
+
`langchain.embeddings.base.Embeddings` interface.
|
79 |
+
table_name: The name of the collection to use. (default: langchain)
|
80 |
+
NOTE: This is not the name of the table, but the name of the collection.
|
81 |
+
The tables will be created when initializing the store (if not exists)
|
82 |
+
So, make sure the user has the right permissions to create tables.
|
83 |
+
distance_strategy: The distance strategy to use. (default: COSINE)
|
84 |
+
pre_delete_collection: If True, will delete the collection if it exists.
|
85 |
+
(default: False). Useful for testing.
|
86 |
+
|
87 |
+
Example:
|
88 |
+
.. code-block:: python
|
89 |
+
|
90 |
+
from langchain.vectorstores import PGVector
|
91 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
92 |
+
|
93 |
+
CONNECTION_STRING = "postgresql+psycopg2://hwc@localhost:5432/test3"
|
94 |
+
COLLECTION_NAME = "state_of_the_union_test"
|
95 |
+
embeddings = OpenAIEmbeddings()
|
96 |
+
vectorestore = PGVector.from_documents(
|
97 |
+
embedding=embeddings,
|
98 |
+
documents=docs,
|
99 |
+
table_name=COLLECTION_NAME,
|
100 |
+
connection_string=CONNECTION_STRING,
|
101 |
+
)
|
102 |
+
|
103 |
+
|
104 |
+
"""
|
105 |
+
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
connection_string: str,
|
109 |
+
embedding_function: Embeddings,
|
110 |
+
table_name: str,
|
111 |
+
column_name: str,
|
112 |
+
collection_metadata: Optional[dict] = None,
|
113 |
+
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
114 |
+
pre_delete_collection: bool = False,
|
115 |
+
logger: Optional[logging.Logger] = None,
|
116 |
+
relevance_score_fn: Optional[Callable[[float], float]] = None,
|
117 |
+
) -> None:
|
118 |
+
self.connection_string = connection_string
|
119 |
+
self.embedding_function = embedding_function
|
120 |
+
self.table_name = table_name
|
121 |
+
self.column_name = column_name
|
122 |
+
self.collection_metadata = collection_metadata
|
123 |
+
self._distance_strategy = distance_strategy
|
124 |
+
self.pre_delete_collection = pre_delete_collection
|
125 |
+
self.logger = logger or logging.getLogger(__name__)
|
126 |
+
self.override_relevance_score_fn = relevance_score_fn
|
127 |
+
self.__post_init__()
|
128 |
+
|
129 |
+
def __post_init__(
|
130 |
+
self,
|
131 |
+
) -> None:
|
132 |
+
"""
|
133 |
+
Initialize the store.
|
134 |
+
"""
|
135 |
+
self._conn = self.connect()
|
136 |
+
self.create_vector_extension()
|
137 |
+
|
138 |
+
self.EmbeddingStore = Article
|
139 |
+
|
140 |
+
@property
|
141 |
+
def embeddings(self) -> Embeddings:
|
142 |
+
return self.embedding_function
|
143 |
+
|
144 |
+
def connect(self) -> sqlalchemy.engine.Connection:
|
145 |
+
engine = sqlalchemy.create_engine(self.connection_string)
|
146 |
+
conn = engine.connect()
|
147 |
+
return conn
|
148 |
+
|
149 |
+
def create_vector_extension(self) -> None:
|
150 |
+
try:
|
151 |
+
with Session(self._conn) as session:
|
152 |
+
statement = sqlalchemy.text("CREATE EXTENSION IF NOT EXISTS vector")
|
153 |
+
session.execute(statement)
|
154 |
+
session.commit()
|
155 |
+
except Exception as e:
|
156 |
+
self.logger.exception(e)
|
157 |
+
|
158 |
+
def drop_tables(self) -> None:
|
159 |
+
with self._conn.begin():
|
160 |
+
Base.metadata.drop_all(self._conn)
|
161 |
+
|
162 |
+
@contextlib.contextmanager
|
163 |
+
def _make_session(self) -> Generator[Session, None, None]:
|
164 |
+
"""Create a context manager for the session, bind to _conn string."""
|
165 |
+
yield Session(self._conn)
|
166 |
+
|
167 |
+
def delete(
|
168 |
+
self,
|
169 |
+
ids: Optional[List[str]] = None,
|
170 |
+
**kwargs: Any,
|
171 |
+
) -> None:
|
172 |
+
"""Delete vectors by ids.
|
173 |
+
|
174 |
+
Args:
|
175 |
+
ids: List of ids to delete.
|
176 |
+
"""
|
177 |
+
with Session(self._conn) as session:
|
178 |
+
if ids is not None:
|
179 |
+
self.logger.debug(
|
180 |
+
"Trying to delete vectors by ids (represented by the model "
|
181 |
+
"using the custom ids field)"
|
182 |
+
)
|
183 |
+
stmt = delete(self.EmbeddingStore).where(
|
184 |
+
self.EmbeddingStore.custom_id.in_(ids)
|
185 |
+
)
|
186 |
+
session.execute(stmt)
|
187 |
+
session.commit()
|
188 |
+
|
189 |
+
@classmethod
|
190 |
+
def __from(
|
191 |
+
cls,
|
192 |
+
texts: List[str],
|
193 |
+
embeddings: List[List[float]],
|
194 |
+
embedding: Embeddings,
|
195 |
+
metadatas: Optional[List[dict]] = None,
|
196 |
+
ids: Optional[List[str]] = None,
|
197 |
+
table_name: str = "article",
|
198 |
+
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
199 |
+
connection_string: Optional[str] = None,
|
200 |
+
pre_delete_collection: bool = False,
|
201 |
+
**kwargs: Any,
|
202 |
+
) -> CustomPGVector:
|
203 |
+
if not metadatas:
|
204 |
+
metadatas = [{} for _ in texts]
|
205 |
+
if connection_string is None:
|
206 |
+
connection_string = cls.get_connection_string(kwargs)
|
207 |
+
|
208 |
+
store = cls(
|
209 |
+
connection_string=connection_string,
|
210 |
+
table_name=table_name,
|
211 |
+
embedding_function=embedding,
|
212 |
+
distance_strategy=distance_strategy,
|
213 |
+
pre_delete_collection=pre_delete_collection,
|
214 |
+
**kwargs,
|
215 |
+
)
|
216 |
+
|
217 |
+
store.add_embeddings(
|
218 |
+
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
|
219 |
+
)
|
220 |
+
|
221 |
+
return store
|
222 |
+
|
223 |
+
def add_embeddings(
|
224 |
+
self,
|
225 |
+
texts: Iterable[str],
|
226 |
+
embeddings: List[List[float]],
|
227 |
+
metadatas: Optional[List[dict]] = None,
|
228 |
+
ids: Optional[List[str]] = None,
|
229 |
+
**kwargs: Any,
|
230 |
+
) -> List[str]:
|
231 |
+
"""Add embeddings to the vectorstore.
|
232 |
+
|
233 |
+
Args:
|
234 |
+
texts: Iterable of strings to add to the vectorstore.
|
235 |
+
embeddings: List of list of embedding vectors.
|
236 |
+
metadatas: List of metadatas associated with the texts.
|
237 |
+
kwargs: vectorstore specific parameters
|
238 |
+
"""
|
239 |
+
if not metadatas:
|
240 |
+
metadatas = [{} for _ in texts]
|
241 |
+
|
242 |
+
with Session(self._conn) as session:
|
243 |
+
# collection = self.get_collection(session)
|
244 |
+
# if not collection:
|
245 |
+
# raise ValueError("Collection not found")
|
246 |
+
for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids):
|
247 |
+
embedding_store = self.EmbeddingStore(
|
248 |
+
embedding=embedding,
|
249 |
+
document=text,
|
250 |
+
cmetadata=metadata,
|
251 |
+
custom_id=id,
|
252 |
+
)
|
253 |
+
session.add(embedding_store)
|
254 |
+
session.commit()
|
255 |
+
|
256 |
+
return ids
|
257 |
+
|
258 |
+
def add_texts(
|
259 |
+
self,
|
260 |
+
texts: Iterable[str],
|
261 |
+
metadatas: Optional[List[dict]] = None,
|
262 |
+
ids: Optional[List[str]] = None,
|
263 |
+
**kwargs: Any,
|
264 |
+
) -> List[str]:
|
265 |
+
"""Run more texts through the embeddings and add to the vectorstore.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
texts: Iterable of strings to add to the vectorstore.
|
269 |
+
metadatas: Optional list of metadatas associated with the texts.
|
270 |
+
kwargs: vectorstore specific parameters
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
List of ids from adding the texts into the vectorstore.
|
274 |
+
"""
|
275 |
+
embeddings = self.embedding_function.embed_documents(list(texts))
|
276 |
+
return self.add_embeddings(
|
277 |
+
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
|
278 |
+
)
|
279 |
+
|
280 |
+
def similarity_search(
|
281 |
+
self,
|
282 |
+
query: str,
|
283 |
+
k: int = 4,
|
284 |
+
filter: Optional[dict] = None,
|
285 |
+
**kwargs: Any,
|
286 |
+
) -> List[Document]:
|
287 |
+
"""Run similarity search with PGVector with distance.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
query (str): Query text to search for.
|
291 |
+
k (int): Number of results to return. Defaults to 4.
|
292 |
+
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
293 |
+
|
294 |
+
Returns:
|
295 |
+
List of Documents most similar to the query.
|
296 |
+
"""
|
297 |
+
embedding = self.embedding_function.embed_query(text=query)
|
298 |
+
return self.similarity_search_by_vector(
|
299 |
+
embedding=embedding,
|
300 |
+
k=k,
|
301 |
+
filter=filter,
|
302 |
+
)
|
303 |
+
|
304 |
+
def similarity_search_with_score(
|
305 |
+
self,
|
306 |
+
query: str,
|
307 |
+
k: int = 4,
|
308 |
+
filter: Optional[dict] = None,
|
309 |
+
) -> List[Tuple[Document, float]]:
|
310 |
+
"""Return docs most similar to query.
|
311 |
+
|
312 |
+
Args:
|
313 |
+
query: Text to look up documents similar to.
|
314 |
+
k: Number of Documents to return. Defaults to 4.
|
315 |
+
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
316 |
+
|
317 |
+
Returns:
|
318 |
+
List of Documents most similar to the query and score for each.
|
319 |
+
"""
|
320 |
+
embedding = self.embedding_function.embed_query(query)
|
321 |
+
docs = self.similarity_search_with_score_by_vector(
|
322 |
+
embedding=embedding, k=k, filter=filter
|
323 |
+
)
|
324 |
+
return docs
|
325 |
+
|
326 |
+
@property
|
327 |
+
def distance_strategy(self) -> Any:
|
328 |
+
if self._distance_strategy == DistanceStrategy.EUCLIDEAN:
|
329 |
+
return self.EmbeddingStore.embedding.l2_distance
|
330 |
+
elif self._distance_strategy == DistanceStrategy.COSINE:
|
331 |
+
return self.EmbeddingStore.embedding.cosine_distance
|
332 |
+
elif self._distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
|
333 |
+
return self.EmbeddingStore.embedding.max_inner_product
|
334 |
+
else:
|
335 |
+
raise ValueError(
|
336 |
+
f"Got unexpected value for distance: {self._distance_strategy}. "
|
337 |
+
f"Should be one of {', '.join([ds.value for ds in DistanceStrategy])}."
|
338 |
+
)
|
339 |
+
|
340 |
+
def similarity_search_with_score_by_vector(
|
341 |
+
self,
|
342 |
+
embedding: List[float],
|
343 |
+
k: int = 4,
|
344 |
+
filter: Optional[dict] = None,
|
345 |
+
) -> List[Tuple[Document, float]]:
|
346 |
+
results = self.__query_collection(embedding=embedding, k=k, filter=filter)
|
347 |
+
|
348 |
+
return self._results_to_docs_and_scores(results)
|
349 |
+
|
350 |
+
def _results_to_docs_and_scores(self, results: Any) -> List[Tuple[Document, float]]:
|
351 |
+
"""Return docs and scores from results."""
|
352 |
+
docs = [
|
353 |
+
(
|
354 |
+
Document(
|
355 |
+
page_content=result.Article.abstract,
|
356 |
+
# metadata={"title": result.Article.title},
|
357 |
+
),
|
358 |
+
result.distance if self.embedding_function is not None else None,
|
359 |
+
)
|
360 |
+
for result in results
|
361 |
+
]
|
362 |
+
return docs
|
363 |
+
|
364 |
+
def __query_collection(
|
365 |
+
self,
|
366 |
+
embedding: List[float],
|
367 |
+
k: int = 4,
|
368 |
+
filter: Optional[Dict[str, str]] = None,
|
369 |
+
) -> List[Any]:
|
370 |
+
"""Query the collection."""
|
371 |
+
with Session(self._conn) as session:
|
372 |
+
results: List[Any] = (
|
373 |
+
session.query(
|
374 |
+
self.EmbeddingStore,
|
375 |
+
self.distance_strategy(embedding).label("distance"), # type: ignore
|
376 |
+
)
|
377 |
+
.order_by(sqlalchemy.asc("distance"))
|
378 |
+
.limit(k)
|
379 |
+
.all()
|
380 |
+
)
|
381 |
+
print(results)
|
382 |
+
return results
|
383 |
+
|
384 |
+
def similarity_search_by_vector(
|
385 |
+
self,
|
386 |
+
embedding: List[float],
|
387 |
+
k: int = 4,
|
388 |
+
filter: Optional[dict] = None,
|
389 |
+
**kwargs: Any,
|
390 |
+
) -> List[Document]:
|
391 |
+
"""Return docs most similar to embedding vector.
|
392 |
+
|
393 |
+
Args:
|
394 |
+
embedding: Embedding to look up documents similar to.
|
395 |
+
k: Number of Documents to return. Defaults to 4.
|
396 |
+
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
397 |
+
|
398 |
+
Returns:
|
399 |
+
List of Documents most similar to the query vector.
|
400 |
+
"""
|
401 |
+
docs_and_scores = self.similarity_search_with_score_by_vector(
|
402 |
+
embedding=embedding, k=k, filter=filter
|
403 |
+
)
|
404 |
+
return _results_to_docs(docs_and_scores)
|
405 |
+
|
406 |
+
@classmethod
|
407 |
+
def from_texts(
|
408 |
+
cls: Type[PGVector],
|
409 |
+
texts: List[str],
|
410 |
+
embedding: Embeddings,
|
411 |
+
metadatas: Optional[List[dict]] = None,
|
412 |
+
table_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
413 |
+
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
414 |
+
ids: Optional[List[str]] = None,
|
415 |
+
pre_delete_collection: bool = False,
|
416 |
+
**kwargs: Any,
|
417 |
+
) -> PGVector:
|
418 |
+
"""
|
419 |
+
Return VectorStore initialized from texts and embeddings.
|
420 |
+
Postgres connection string is required
|
421 |
+
"Either pass it as a parameter
|
422 |
+
or set the PGVECTOR_CONNECTION_STRING environment variable.
|
423 |
+
"""
|
424 |
+
embeddings = embedding.embed_documents(list(texts))
|
425 |
+
|
426 |
+
return cls.__from(
|
427 |
+
texts,
|
428 |
+
embeddings,
|
429 |
+
embedding,
|
430 |
+
metadatas=metadatas,
|
431 |
+
ids=ids,
|
432 |
+
table_name=table_name,
|
433 |
+
distance_strategy=distance_strategy,
|
434 |
+
pre_delete_collection=pre_delete_collection,
|
435 |
+
**kwargs,
|
436 |
+
)
|
437 |
+
|
438 |
+
@classmethod
|
439 |
+
def from_embeddings(
|
440 |
+
cls,
|
441 |
+
text_embeddings: List[Tuple[str, List[float]]],
|
442 |
+
embedding: Embeddings,
|
443 |
+
metadatas: Optional[List[dict]] = None,
|
444 |
+
table_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
445 |
+
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
446 |
+
ids: Optional[List[str]] = None,
|
447 |
+
pre_delete_collection: bool = False,
|
448 |
+
**kwargs: Any,
|
449 |
+
) -> PGVector:
|
450 |
+
"""Construct PGVector wrapper from raw documents and pre-
|
451 |
+
generated embeddings.
|
452 |
+
|
453 |
+
Return VectorStore initialized from documents and embeddings.
|
454 |
+
Postgres connection string is required
|
455 |
+
"Either pass it as a parameter
|
456 |
+
or set the PGVECTOR_CONNECTION_STRING environment variable.
|
457 |
+
|
458 |
+
Example:
|
459 |
+
.. code-block:: python
|
460 |
+
|
461 |
+
from langchain.vectorstores import PGVector
|
462 |
+
from langchain.embeddings import OpenAIEmbeddings
|
463 |
+
embeddings = OpenAIEmbeddings()
|
464 |
+
text_embeddings = embeddings.embed_documents(texts)
|
465 |
+
text_embedding_pairs = list(zip(texts, text_embeddings))
|
466 |
+
faiss = PGVector.from_embeddings(text_embedding_pairs, embeddings)
|
467 |
+
"""
|
468 |
+
texts = [t[0] for t in text_embeddings]
|
469 |
+
embeddings = [t[1] for t in text_embeddings]
|
470 |
+
|
471 |
+
return cls.__from(
|
472 |
+
texts,
|
473 |
+
embeddings,
|
474 |
+
embedding,
|
475 |
+
metadatas=metadatas,
|
476 |
+
ids=ids,
|
477 |
+
table_name=table_name,
|
478 |
+
distance_strategy=distance_strategy,
|
479 |
+
pre_delete_collection=pre_delete_collection,
|
480 |
+
**kwargs,
|
481 |
+
)
|
482 |
+
|
483 |
+
@classmethod
|
484 |
+
def from_existing_index(
|
485 |
+
cls: Type[PGVector],
|
486 |
+
embedding: Embeddings,
|
487 |
+
table_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
488 |
+
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
489 |
+
pre_delete_collection: bool = False,
|
490 |
+
**kwargs: Any,
|
491 |
+
) -> PGVector:
|
492 |
+
"""
|
493 |
+
Get intsance of an existing PGVector store.This method will
|
494 |
+
return the instance of the store without inserting any new
|
495 |
+
embeddings
|
496 |
+
"""
|
497 |
+
|
498 |
+
connection_string = cls.get_connection_string(kwargs)
|
499 |
+
|
500 |
+
store = cls(
|
501 |
+
connection_string=connection_string,
|
502 |
+
table_name=table_name,
|
503 |
+
embedding_function=embedding,
|
504 |
+
distance_strategy=distance_strategy,
|
505 |
+
pre_delete_collection=pre_delete_collection,
|
506 |
+
)
|
507 |
+
|
508 |
+
return store
|
509 |
+
|
510 |
+
@classmethod
|
511 |
+
def get_connection_string(cls, kwargs: Dict[str, Any]) -> str:
|
512 |
+
connection_string: str = get_from_dict_or_env(
|
513 |
+
data=kwargs,
|
514 |
+
key="connection_string",
|
515 |
+
env_key="PGVECTOR_CONNECTION_STRING",
|
516 |
+
)
|
517 |
+
|
518 |
+
if not connection_string:
|
519 |
+
raise ValueError(
|
520 |
+
"Postgres connection string is required"
|
521 |
+
"Either pass it as a parameter"
|
522 |
+
"or set the PGVECTOR_CONNECTION_STRING environment variable."
|
523 |
+
)
|
524 |
+
|
525 |
+
return connection_string
|
526 |
+
|
527 |
+
@classmethod
|
528 |
+
def from_documents(
|
529 |
+
cls: Type[CustomPGVector],
|
530 |
+
documents: List[Document],
|
531 |
+
embedding: Embeddings,
|
532 |
+
table_name: str = "article",
|
533 |
+
column_name: str = "embeding",
|
534 |
+
distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
|
535 |
+
ids: Optional[List[str]] = None,
|
536 |
+
pre_delete_collection: bool = False,
|
537 |
+
**kwargs: Any,
|
538 |
+
) -> CustomPGVector:
|
539 |
+
"""
|
540 |
+
Return VectorStore initialized from documents and embeddings.
|
541 |
+
Postgres connection string is required
|
542 |
+
"Either pass it as a parameter
|
543 |
+
or set the PGVECTOR_CONNECTION_STRING environment variable.
|
544 |
+
"""
|
545 |
+
|
546 |
+
texts = [d.page_content for d in documents]
|
547 |
+
metadatas = [d.metadata for d in documents]
|
548 |
+
connection_string = cls.get_connection_string(kwargs)
|
549 |
+
|
550 |
+
kwargs["connection_string"] = connection_string
|
551 |
+
|
552 |
+
return cls.from_texts(
|
553 |
+
texts=texts,
|
554 |
+
pre_delete_collection=pre_delete_collection,
|
555 |
+
embedding=embedding,
|
556 |
+
distance_strategy=distance_strategy,
|
557 |
+
metadatas=metadatas,
|
558 |
+
ids=ids,
|
559 |
+
table_name=table_name,
|
560 |
+
column_name=column_name,
|
561 |
+
**kwargs,
|
562 |
+
)
|
563 |
+
|
564 |
+
@classmethod
|
565 |
+
def connection_string_from_db_params(
|
566 |
+
cls,
|
567 |
+
driver: str,
|
568 |
+
host: str,
|
569 |
+
port: int,
|
570 |
+
database: str,
|
571 |
+
user: str,
|
572 |
+
password: str,
|
573 |
+
) -> str:
|
574 |
+
"""Return connection string from database parameters."""
|
575 |
+
return f"postgresql+{driver}://{user}:{password}@{host}:{port}/{database}"
|
576 |
+
|
577 |
+
def _select_relevance_score_fn(self) -> Callable[[float], float]:
|
578 |
+
"""
|
579 |
+
The 'correct' relevance function
|
580 |
+
may differ depending on a few things, including:
|
581 |
+
- the distance / similarity metric used by the VectorStore
|
582 |
+
- the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
|
583 |
+
- embedding dimensionality
|
584 |
+
- etc.
|
585 |
+
"""
|
586 |
+
if self.override_relevance_score_fn is not None:
|
587 |
+
return self.override_relevance_score_fn
|
588 |
+
|
589 |
+
# Default strategy is to rely on distance strategy provided
|
590 |
+
# in vectorstore constructor
|
591 |
+
if self._distance_strategy == DistanceStrategy.COSINE:
|
592 |
+
return self._cosine_relevance_score_fn
|
593 |
+
elif self._distance_strategy == DistanceStrategy.EUCLIDEAN:
|
594 |
+
return self._euclidean_relevance_score_fn
|
595 |
+
elif self._distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
|
596 |
+
return self._max_inner_product_relevance_score_fn
|
597 |
+
else:
|
598 |
+
raise ValueError(
|
599 |
+
"No supported normalization function"
|
600 |
+
f" for distance_strategy of {self._distance_strategy}."
|
601 |
+
"Consider providing relevance_score_fn to PGVector constructor."
|
602 |
+
)
|
603 |
+
|
604 |
+
def max_marginal_relevance_search_with_score_by_vector(
|
605 |
+
self,
|
606 |
+
embedding: List[float],
|
607 |
+
k: int = 4,
|
608 |
+
fetch_k: int = 20,
|
609 |
+
lambda_mult: float = 0.5,
|
610 |
+
filter: Optional[Dict[str, str]] = None,
|
611 |
+
**kwargs: Any,
|
612 |
+
) -> List[Tuple[Document, float]]:
|
613 |
+
"""Return docs selected using the maximal marginal relevance with score
|
614 |
+
to embedding vector.
|
615 |
+
|
616 |
+
Maximal marginal relevance optimizes for similarity to query AND diversity
|
617 |
+
among selected documents.
|
618 |
+
|
619 |
+
Args:
|
620 |
+
embedding: Embedding to look up documents similar to.
|
621 |
+
k (int): Number of Documents to return. Defaults to 4.
|
622 |
+
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
|
623 |
+
Defaults to 20.
|
624 |
+
lambda_mult (float): Number between 0 and 1 that determines the degree
|
625 |
+
of diversity among the results with 0 corresponding
|
626 |
+
to maximum diversity and 1 to minimum diversity.
|
627 |
+
Defaults to 0.5.
|
628 |
+
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
629 |
+
|
630 |
+
Returns:
|
631 |
+
List[Tuple[Document, float]]: List of Documents selected by maximal marginal
|
632 |
+
relevance to the query and score for each.
|
633 |
+
"""
|
634 |
+
results = self.__query_collection(embedding=embedding, k=fetch_k, filter=filter)
|
635 |
+
|
636 |
+
embedding_list = [result.EmbeddingStore.embedding for result in results]
|
637 |
+
|
638 |
+
mmr_selected = maximal_marginal_relevance(
|
639 |
+
np.array(embedding, dtype=np.float32),
|
640 |
+
embedding_list,
|
641 |
+
k=k,
|
642 |
+
lambda_mult=lambda_mult,
|
643 |
+
)
|
644 |
+
|
645 |
+
candidates = self._results_to_docs_and_scores(results)
|
646 |
+
|
647 |
+
return [r for i, r in enumerate(candidates) if i in mmr_selected]
|
648 |
+
|
649 |
+
def max_marginal_relevance_search(
|
650 |
+
self,
|
651 |
+
query: str,
|
652 |
+
k: int = 4,
|
653 |
+
fetch_k: int = 20,
|
654 |
+
lambda_mult: float = 0.5,
|
655 |
+
filter: Optional[Dict[str, str]] = None,
|
656 |
+
**kwargs: Any,
|
657 |
+
) -> List[Document]:
|
658 |
+
"""Return docs selected using the maximal marginal relevance.
|
659 |
+
|
660 |
+
Maximal marginal relevance optimizes for similarity to query AND diversity
|
661 |
+
among selected documents.
|
662 |
+
|
663 |
+
Args:
|
664 |
+
query (str): Text to look up documents similar to.
|
665 |
+
k (int): Number of Documents to return. Defaults to 4.
|
666 |
+
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
|
667 |
+
Defaults to 20.
|
668 |
+
lambda_mult (float): Number between 0 and 1 that determines the degree
|
669 |
+
of diversity among the results with 0 corresponding
|
670 |
+
to maximum diversity and 1 to minimum diversity.
|
671 |
+
Defaults to 0.5.
|
672 |
+
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
673 |
+
|
674 |
+
Returns:
|
675 |
+
List[Document]: List of Documents selected by maximal marginal relevance.
|
676 |
+
"""
|
677 |
+
embedding = self.embedding_function.embed_query(query)
|
678 |
+
return self.max_marginal_relevance_search_by_vector(
|
679 |
+
embedding,
|
680 |
+
k=k,
|
681 |
+
fetch_k=fetch_k,
|
682 |
+
lambda_mult=lambda_mult,
|
683 |
+
**kwargs,
|
684 |
+
)
|
685 |
+
|
686 |
+
def max_marginal_relevance_search_with_score(
|
687 |
+
self,
|
688 |
+
query: str,
|
689 |
+
k: int = 4,
|
690 |
+
fetch_k: int = 20,
|
691 |
+
lambda_mult: float = 0.5,
|
692 |
+
filter: Optional[dict] = None,
|
693 |
+
**kwargs: Any,
|
694 |
+
) -> List[Tuple[Document, float]]:
|
695 |
+
"""Return docs selected using the maximal marginal relevance with score.
|
696 |
+
|
697 |
+
Maximal marginal relevance optimizes for similarity to query AND diversity
|
698 |
+
among selected documents.
|
699 |
+
|
700 |
+
Args:
|
701 |
+
query (str): Text to look up documents similar to.
|
702 |
+
k (int): Number of Documents to return. Defaults to 4.
|
703 |
+
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
|
704 |
+
Defaults to 20.
|
705 |
+
lambda_mult (float): Number between 0 and 1 that determines the degree
|
706 |
+
of diversity among the results with 0 corresponding
|
707 |
+
to maximum diversity and 1 to minimum diversity.
|
708 |
+
Defaults to 0.5.
|
709 |
+
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
710 |
+
|
711 |
+
Returns:
|
712 |
+
List[Tuple[Document, float]]: List of Documents selected by maximal marginal
|
713 |
+
relevance to the query and score for each.
|
714 |
+
"""
|
715 |
+
embedding = self.embedding_function.embed_query(query)
|
716 |
+
docs = self.max_marginal_relevance_search_with_score_by_vector(
|
717 |
+
embedding=embedding,
|
718 |
+
k=k,
|
719 |
+
fetch_k=fetch_k,
|
720 |
+
lambda_mult=lambda_mult,
|
721 |
+
filter=filter,
|
722 |
+
**kwargs,
|
723 |
+
)
|
724 |
+
return docs
|
725 |
+
|
726 |
+
def max_marginal_relevance_search_by_vector(
|
727 |
+
self,
|
728 |
+
embedding: List[float],
|
729 |
+
k: int = 4,
|
730 |
+
fetch_k: int = 20,
|
731 |
+
lambda_mult: float = 0.5,
|
732 |
+
filter: Optional[Dict[str, str]] = None,
|
733 |
+
**kwargs: Any,
|
734 |
+
) -> List[Document]:
|
735 |
+
"""Return docs selected using the maximal marginal relevance
|
736 |
+
to embedding vector.
|
737 |
+
|
738 |
+
Maximal marginal relevance optimizes for similarity to query AND diversity
|
739 |
+
among selected documents.
|
740 |
+
|
741 |
+
Args:
|
742 |
+
embedding (str): Text to look up documents similar to.
|
743 |
+
k (int): Number of Documents to return. Defaults to 4.
|
744 |
+
fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
|
745 |
+
Defaults to 20.
|
746 |
+
lambda_mult (float): Number between 0 and 1 that determines the degree
|
747 |
+
of diversity among the results with 0 corresponding
|
748 |
+
to maximum diversity and 1 to minimum diversity.
|
749 |
+
Defaults to 0.5.
|
750 |
+
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
751 |
+
|
752 |
+
Returns:
|
753 |
+
List[Document]: List of Documents selected by maximal marginal relevance.
|
754 |
+
"""
|
755 |
+
docs_and_scores = self.max_marginal_relevance_search_with_score_by_vector(
|
756 |
+
embedding,
|
757 |
+
k=k,
|
758 |
+
fetch_k=fetch_k,
|
759 |
+
lambda_mult=lambda_mult,
|
760 |
+
filter=filter,
|
761 |
+
**kwargs,
|
762 |
+
)
|
763 |
+
|
764 |
+
return _results_to_docs(docs_and_scores)
|
765 |
+
|
766 |
+
async def amax_marginal_relevance_search_by_vector(
|
767 |
+
self,
|
768 |
+
embedding: List[float],
|
769 |
+
k: int = 4,
|
770 |
+
fetch_k: int = 20,
|
771 |
+
lambda_mult: float = 0.5,
|
772 |
+
filter: Optional[Dict[str, str]] = None,
|
773 |
+
**kwargs: Any,
|
774 |
+
) -> List[Document]:
|
775 |
+
"""Return docs selected using the maximal marginal relevance."""
|
776 |
+
|
777 |
+
# This is a temporary workaround to make the similarity search
|
778 |
+
# asynchronous. The proper solution is to make the similarity search
|
779 |
+
# asynchronous in the vector store implementations.
|
780 |
+
func = partial(
|
781 |
+
self.max_marginal_relevance_search_by_vector,
|
782 |
+
embedding,
|
783 |
+
k=k,
|
784 |
+
fetch_k=fetch_k,
|
785 |
+
lambda_mult=lambda_mult,
|
786 |
+
filter=filter,
|
787 |
+
**kwargs,
|
788 |
+
)
|
789 |
+
return await asyncio.get_event_loop().run_in_executor(None, func)
|