Spaces:
Sleeping
Sleeping
Léo Bourrel
commited on
Commit
·
1bf2e1f
1
Parent(s):
5ef0b6a
feat: rename vector store
Browse files- app.py +2 -2
- custom_pgvector.py → vector_store.py +4 -4
app.py
CHANGED
@@ -11,7 +11,7 @@ from langchain.llms import OpenAI
|
|
11 |
|
12 |
from chat_history import insert_chat_history, insert_chat_history_articles
|
13 |
from css import load_css
|
14 |
-
from custom_pgvector import
|
15 |
from message import Message
|
16 |
from connection import connect
|
17 |
|
@@ -32,7 +32,7 @@ def initialize_session_state():
|
|
32 |
if "conversation" not in st.session_state:
|
33 |
embeddings = GPT4AllEmbeddings()
|
34 |
|
35 |
-
db =
|
36 |
embedding_function=embeddings,
|
37 |
table_name="article",
|
38 |
column_name="abstract_embedding",
|
|
|
11 |
|
12 |
from chat_history import insert_chat_history, insert_chat_history_articles
|
13 |
from css import load_css
|
14 |
+
from custom_pgvector import CustomVectorStore
|
15 |
from message import Message
|
16 |
from connection import connect
|
17 |
|
|
|
32 |
if "conversation" not in st.session_state:
|
33 |
embeddings = GPT4AllEmbeddings()
|
34 |
|
35 |
+
db = CustomVectorStore(
|
36 |
embedding_function=embeddings,
|
37 |
table_name="article",
|
38 |
column_name="abstract_embedding",
|
custom_pgvector.py → vector_store.py
RENAMED
@@ -27,7 +27,7 @@ def _results_to_docs(docs_and_scores: Any) -> List[Document]:
|
|
27 |
return [doc for doc, _ in docs_and_scores]
|
28 |
|
29 |
|
30 |
-
class
|
31 |
"""`Postgres`/`PGVector` vector store.
|
32 |
|
33 |
To use, you should have the ``pgvector`` python package installed.
|
@@ -141,7 +141,7 @@ class CustomPGVector(VectorStore):
|
|
141 |
connection_string: Optional[str] = None,
|
142 |
pre_delete_collection: bool = False,
|
143 |
**kwargs: Any,
|
144 |
-
) ->
|
145 |
if not metadatas:
|
146 |
metadatas = [{} for _ in texts]
|
147 |
if connection_string is None:
|
@@ -381,7 +381,7 @@ class CustomPGVector(VectorStore):
|
|
381 |
|
382 |
@classmethod
|
383 |
def from_texts(
|
384 |
-
cls: Type[
|
385 |
texts: List[str],
|
386 |
embedding: Embeddings,
|
387 |
metadatas: Optional[List[dict]] = None,
|
@@ -390,7 +390,7 @@ class CustomPGVector(VectorStore):
|
|
390 |
ids: Optional[List[str]] = None,
|
391 |
pre_delete_collection: bool = False,
|
392 |
**kwargs: Any,
|
393 |
-
) ->
|
394 |
"""
|
395 |
Return VectorStore initialized from texts and embeddings.
|
396 |
Postgres connection string is required
|
|
|
27 |
return [doc for doc, _ in docs_and_scores]
|
28 |
|
29 |
|
30 |
+
class CustomVectorStore(VectorStore):
|
31 |
"""`Postgres`/`PGVector` vector store.
|
32 |
|
33 |
To use, you should have the ``pgvector`` python package installed.
|
|
|
141 |
connection_string: Optional[str] = None,
|
142 |
pre_delete_collection: bool = False,
|
143 |
**kwargs: Any,
|
144 |
+
) -> CustomVectorStore:
|
145 |
if not metadatas:
|
146 |
metadatas = [{} for _ in texts]
|
147 |
if connection_string is None:
|
|
|
381 |
|
382 |
@classmethod
|
383 |
def from_texts(
|
384 |
+
cls: Type[CustomVectorStore],
|
385 |
texts: List[str],
|
386 |
embedding: Embeddings,
|
387 |
metadatas: Optional[List[dict]] = None,
|
|
|
390 |
ids: Optional[List[str]] = None,
|
391 |
pre_delete_collection: bool = False,
|
392 |
**kwargs: Any,
|
393 |
+
) -> CustomVectorStore:
|
394 |
"""
|
395 |
Return VectorStore initialized from texts and embeddings.
|
396 |
Postgres connection string is required
|