|
---
|
|
license: mit
|
|
base_model:
|
|
- PRIME-RL/Eurus-2-7B-PRIME
|
|
- Qwen/Qwen2.5-7B-Instruct
|
|
tags:
|
|
- merge
|
|
- mergekit
|
|
- lazymergekit
|
|
language:
|
|
- zho
|
|
- eng
|
|
- fra
|
|
- spa
|
|
- por
|
|
- deu
|
|
- ita
|
|
- rus
|
|
- jpn
|
|
- kor
|
|
- vie
|
|
- tha
|
|
- ara
|
|
---
|
|
|
|
# Qwerus-7B
|
|
|
|
Qwerus-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
|
|
* [PRIME-RL/Eurus-2-7B-PRIME](https://huggingface.co/PRIME-RL/Eurus-2-7B-PRIME)
|
|
* [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)
|
|
|
|
Benchmark on reasoning tasks using lighteval:
|
|
|
|
| Task |Version| Metric |Value | |Stderr|
|
|
|-----------------|------:|----------------|-----:|---|-----:|
|
|
|aime24 | 1|extractive_match|0.1333|± |0.0631|
|
|
|math_500| 1|extractive_match|0.7420|± |0.0196|
|
|
|
|
In comparison, Qwen2.5-7B-Instruct:
|
|
|
|
| Task |Version| Metric |Value | |Stderr|
|
|
|-----------------|------:|----------------|-----:|---|-----:|
|
|
|aime24 | 1|extractive_match|0.1667|± |0.0692|
|
|
|math_500| 1|extractive_match|0.8220|± |0.0171|
|
|
|
|
## 🧩 Configuration
|
|
|
|
```yaml
|
|
models:
|
|
- model: Qwen/Qwen2.5-7B
|
|
# No parameters necessary for base model
|
|
- model: PRIME-RL/Eurus-2-7B-PRIME
|
|
parameters:
|
|
density: 0.56
|
|
weight: 0.5
|
|
- model: Qwen/Qwen2.5-7B-Instruct
|
|
parameters:
|
|
density: 0.56
|
|
weight: 0.5
|
|
merge_method: dare_ties
|
|
base_model: Qwen/Qwen2.5-7B
|
|
dtype: bfloat16
|
|
```
|
|
|
|
## 💻 Usage
|
|
|
|
```python
|
|
!pip install -qU transformers accelerate
|
|
|
|
from transformers import AutoTokenizer
|
|
import transformers
|
|
import torch
|
|
|
|
model = "mlabonne/Qwerus-7B"
|
|
messages = [{"role": "user", "content": "What is a large language model?"}]
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model)
|
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
pipeline = transformers.pipeline(
|
|
"text-generation",
|
|
model=model,
|
|
torch_dtype=torch.float16,
|
|
device_map="auto",
|
|
)
|
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
|
print(outputs[0]["generated_text"])
|
|
``` |