Qwerus-7B / README.md
mlabonne's picture
Improve language tag (#1)
5174cd1 verified
metadata
license: mit
base_model:
  - PRIME-RL/Eurus-2-7B-PRIME
  - Qwen/Qwen2.5-7B-Instruct
tags:
  - merge
  - mergekit
  - lazymergekit
language:
  - zho
  - eng
  - fra
  - spa
  - por
  - deu
  - ita
  - rus
  - jpn
  - kor
  - vie
  - tha
  - ara

Qwerus-7B

Qwerus-7B is a merge of the following models using LazyMergekit:

Benchmark on reasoning tasks using lighteval:

Task Version Metric Value Stderr
aime24 1 extractive_match 0.1333 ± 0.0631
math_500 1 extractive_match 0.7420 ± 0.0196

In comparison, Qwen2.5-7B-Instruct:

Task Version Metric Value Stderr
aime24 1 extractive_match 0.1667 ± 0.0692
math_500 1 extractive_match 0.8220 ± 0.0171

🧩 Configuration

models:
  - model: Qwen/Qwen2.5-7B
    # No parameters necessary for base model
  - model: PRIME-RL/Eurus-2-7B-PRIME
    parameters:
      density: 0.56
      weight: 0.5
  - model: Qwen/Qwen2.5-7B-Instruct
    parameters:
      density: 0.56
      weight: 0.5
merge_method: dare_ties
base_model: Qwen/Qwen2.5-7B
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/Qwerus-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])