File size: 2,213 Bytes
5174cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceeaa38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---

license: mit
base_model:
- PRIME-RL/Eurus-2-7B-PRIME
- Qwen/Qwen2.5-7B-Instruct
tags:
- merge
- mergekit
- lazymergekit
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
---


# Qwerus-7B

Qwerus-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [PRIME-RL/Eurus-2-7B-PRIME](https://huggingface.co/PRIME-RL/Eurus-2-7B-PRIME)
* [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)

Benchmark on reasoning tasks using lighteval:

|      Task       |Version|     Metric     |Value |   |Stderr|
|-----------------|------:|----------------|-----:|---|-----:|
|aime24  |      1|extractive_match|0.1333|±  |0.0631|

|math_500|      1|extractive_match|0.7420|±  |0.0196|



In comparison, Qwen2.5-7B-Instruct:



|      Task       |Version|     Metric     |Value |   |Stderr|

|-----------------|------:|----------------|-----:|---|-----:|

|aime24  |      1|extractive_match|0.1667|±  |0.0692|
|math_500|      1|extractive_match|0.8220|±  |0.0171|

## 🧩 Configuration

```yaml

models:

  - model: Qwen/Qwen2.5-7B

    # No parameters necessary for base model

  - model: PRIME-RL/Eurus-2-7B-PRIME

    parameters:

      density: 0.56

      weight: 0.5

  - model: Qwen/Qwen2.5-7B-Instruct

    parameters:

      density: 0.56

      weight: 0.5

merge_method: dare_ties

base_model: Qwen/Qwen2.5-7B

dtype: bfloat16

```

## 💻 Usage

```python

!pip install -qU transformers accelerate



from transformers import AutoTokenizer

import transformers

import torch



model = "mlabonne/Qwerus-7B"

messages = [{"role": "user", "content": "What is a large language model?"}]



tokenizer = AutoTokenizer.from_pretrained(model)

prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

pipeline = transformers.pipeline(

    "text-generation",

    model=model,

    torch_dtype=torch.float16,

    device_map="auto",

)



outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)

print(outputs[0]["generated_text"])

```