thoddnn's picture
Upload folder using huggingface_hub
764fb43 verified
metadata
library_name: transformers
tags:
  - colpali
  - mlx
license: apache-2.0
datasets:
  - vidore/colpali_train_set
language:
  - en
base_model:
  - vidore/colqwen2-base
pipeline_tag: visual-document-retrieval

thoddnn/colqwen2-v1.0-mlx-4bit

The Model thoddnn/colqwen2-v1.0-mlx-4bit was converted to MLX format from vidore/colqwen2-v1.0-hf using mlx-lm version 0.0.3.

Use with mlx

pip install mlx-embeddings
from mlx_embeddings import load, generate
import mlx.core as mx

model, tokenizer = load("thoddnn/colqwen2-v1.0-mlx-4bit")

# For text embeddings
output = generate(model, processor, texts=["I like grapes", "I like fruits"])
embeddings = output.text_embeds  # Normalized embeddings

# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)

print("Similarity matrix between texts:")
print(similarity_matrix)