metadata
library_name: transformers
tags:
- colpali
- mlx
license: apache-2.0
datasets:
- vidore/colpali_train_set
language:
- en
base_model:
- vidore/colqwen2-base
pipeline_tag: visual-document-retrieval
thoddnn/colqwen2-v1.0-mlx-4bit
The Model thoddnn/colqwen2-v1.0-mlx-4bit was converted to MLX format from vidore/colqwen2-v1.0-hf using mlx-lm version 0.0.3.
Use with mlx
pip install mlx-embeddings
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("thoddnn/colqwen2-v1.0-mlx-4bit")
# For text embeddings
output = generate(model, processor, texts=["I like grapes", "I like fruits"])
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)