File size: 1,008 Bytes
764fb43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
library_name: transformers
tags:
- colpali
- mlx
license: apache-2.0
datasets:
- vidore/colpali_train_set
language:
- en
base_model:
- vidore/colqwen2-base
pipeline_tag: visual-document-retrieval
---
# thoddnn/colqwen2-v1.0-mlx-4bit
The Model [thoddnn/colqwen2-v1.0-mlx-4bit](https://huggingface.co/thoddnn/colqwen2-v1.0-mlx-4bit) was converted to MLX format from [vidore/colqwen2-v1.0-hf](https://huggingface.co/vidore/colqwen2-v1.0-hf) using mlx-lm version **0.0.3**.
## Use with mlx
```bash
pip install mlx-embeddings
```
```python
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("thoddnn/colqwen2-v1.0-mlx-4bit")
# For text embeddings
output = generate(model, processor, texts=["I like grapes", "I like fruits"])
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)
```
|