Spaces:
Sleeping
Sleeping
File size: 24,871 Bytes
1b167bf 4e5d878 1b167bf 951c395 1b167bf 951c395 ab6abb0 3e010de f1d02c3 1b167bf 3e010de 951c395 7a1615b 951c395 3e010de 951c395 3e010de f1d02c3 951c395 7a1615b d8c6271 f1d02c3 951c395 3e010de f1d02c3 7a1615b 3e010de f1d02c3 3e010de 1b167bf 3e010de f1d02c3 3e010de 951c395 f1d02c3 c59e337 d283cbc f1d02c3 c59e337 3e010de 951c395 3e010de 951c395 3e010de f1d02c3 3e010de ab6abb0 f1d02c3 3e010de f1d02c3 3e010de f1d02c3 3e010de ab6abb0 3e010de 951c395 ab6abb0 1b167bf 4e5d878 1b167bf 4e5d878 f1d02c3 4e5d878 1b167bf 3e010de 1b167bf 3e010de 9b37297 1b167bf f1d02c3 3e010de 1b167bf f1d02c3 1b167bf 9b37297 1b167bf 3e010de 9b37297 1b167bf 3e010de 1b167bf ab6abb0 1b167bf 3e010de 1b167bf 9b37297 1b167bf ab6abb0 1b167bf 3e010de 1b167bf 3e010de 1b167bf 3e010de f1d02c3 1b167bf 9b37297 1b167bf 3e010de 1b167bf 9b37297 1b167bf 3e010de 1b167bf 3e010de 1b167bf 3e010de f1d02c3 3e010de 9b37297 1b167bf f7aec95 1b167bf f1d02c3 f7aec95 1b167bf 3e010de 1b167bf 3e010de 9b37297 1b167bf 3e010de 1b167bf f7aec95 9b37297 1b167bf 3e010de 1b167bf f1d02c3 3e010de f7aec95 3e010de 1b167bf 3e010de f1d02c3 3e010de 1b167bf 3e010de 1b167bf 3e010de 9b37297 1b167bf 3e010de 9b37297 3e010de 9b37297 3e010de 1b167bf 3e010de ab6abb0 3e010de 1b167bf 3e010de 1b167bf 3e010de 1b167bf 3e010de 1b167bf 7a1615b f1d02c3 7a1615b f1d02c3 7a1615b f1d02c3 7a1615b f1d02c3 7a1615b fb3575f 7a1615b 1b167bf 9b37297 3e010de f1d02c3 ab6abb0 1b167bf 3e010de f1d02c3 1b167bf f1d02c3 1b167bf f1d02c3 1b167bf 3e010de f1d02c3 3e010de f1d02c3 3e010de 1b167bf f7aec95 f1d02c3 1b167bf f1d02c3 f7aec95 f1d02c3 f7aec95 f1d02c3 3e010de f1d02c3 3e010de f1d02c3 3e010de f1d02c3 3e010de f1d02c3 3e010de f1d02c3 3e010de f1d02c3 3e010de f1d02c3 1b167bf f1d02c3 1b167bf 3e010de f1d02c3 3e010de f1d02c3 3e010de f1d02c3 3e010de f1d02c3 3e010de f1d02c3 3e010de f1d02c3 1b167bf f1d02c3 3e010de f1d02c3 3e010de f1d02c3 3e010de f1d02c3 3e010de f1d02c3 3e010de 1b167bf f1d02c3 1b167bf f1d02c3 1b167bf 3e010de f1d02c3 3e010de f1d02c3 3e010de f7aec95 f1d02c3 3e010de 1b167bf 3e010de 7a1615b 3e010de 1b167bf f1d02c3 1b167bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
import spaces
import gradio as gr
import logging
import os
import tempfile
import pandas as pd
import requests
from bs4 import BeautifulSoup
import torch
import whisper
import subprocess
from pydub import AudioSegment
import fitz
import docx
import yt_dlp
from functools import lru_cache
import gc
import time
from huggingface_hub import login
from unsloth import FastLanguageModel
from transformers import AutoTokenizer
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Login to Hugging Face Hub if token is available
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
if HUGGINGFACE_TOKEN:
login(token=HUGGINGFACE_TOKEN)
class ModelManager:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(ModelManager, cls).__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if not self._initialized:
self.tokenizer = None
self.model = None
self.pipeline = None
self.whisper_model = None
self._initialized = True
self.last_used = time.time()
@spaces.GPU()
def initialize_llm(self):
"""Initialize LLM model with Unsloth optimization"""
try:
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
logger.info("Loading Unsloth-optimized model...")
self.model, self.tokenizer = FastLanguageModel.from_pretrained(
model_name = MODEL_NAME,
max_seq_length = 2048,
dtype = torch.float16,
load_in_4bit = True,
token = HUGGINGFACE_TOKEN,
)
# Enable LoRA for better ZeroGPU performance
self.model = FastLanguageModel.get_peft_model(
self.model,
r = 16,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"],
lora_alpha = 16,
lora_dropout = 0,
bias = "none",
use_gradient_checkpointing = True,
random_state = 3407,
max_seq_length = 2048,
)
logger.info("LLM initialized successfully with Unsloth")
self.last_used = time.time()
return True
except Exception as e:
logger.error(f"Error initializing LLM: {str(e)}")
raise
@spaces.GPU()
def initialize_whisper(self):
"""Initialize Whisper model with safety fix"""
try:
logger.info("Loading Whisper model...")
# Load with weights_only=True for security
self.whisper_model = whisper.load_model(
"tiny",
device="cuda" if torch.cuda.is_available() else "cpu",
download_root="/tmp/whisper",
weights_only=True # Security fix
)
logger.info("Whisper model initialized successfully")
self.last_used = time.time()
return True
except Exception as e:
logger.error(f"Error initializing Whisper: {str(e)}")
raise
def check_llm_initialized(self):
"""Check if LLM is initialized and initialize if needed"""
if self.tokenizer is None or self.model is None:
logger.info("LLM not initialized, initializing...")
self.initialize_llm()
self.last_used = time.time()
def check_whisper_initialized(self):
"""Check if Whisper model is initialized and initialize if needed"""
if self.whisper_model is None:
logger.info("Whisper model not initialized, initializing...")
self.initialize_whisper()
self.last_used = time.time()
def reset_models(self, force=False):
"""Reset models to free memory if they haven't been used recently"""
current_time = time.time()
if force or (current_time - self.last_used > 600):
try:
logger.info("Resetting models to free memory...")
if self.model is not None:
del self.model
if self.tokenizer is not None:
del self.tokenizer
if self.whisper_model is not None:
del self.whisper_model
self.tokenizer = None
self.model = None
self.whisper_model = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
logger.info("Models reset successfully")
except Exception as e:
logger.error(f"Error resetting models: {str(e)}")
model_manager = ModelManager()
@lru_cache(maxsize=32)
def download_social_media_video(url):
"""Download a video from social media."""
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': '%(id)s.%(ext)s',
}
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
audio_file = f"{info_dict['id']}.mp3"
logger.info(f"Video downloaded successfully: {audio_file}")
return audio_file
except Exception as e:
logger.error(f"Error downloading video: {str(e)}")
raise
def convert_video_to_audio(video_file):
"""Convert a video file to audio using ffmpeg directly."""
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
output_file = temp_file.name
command = [
"ffmpeg",
"-i", video_file,
"-q:a", "0",
"-map", "a",
"-vn",
output_file,
"-y"
]
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
logger.info(f"Video converted to audio: {output_file}")
return output_file
except Exception as e:
logger.error(f"Error converting video: {str(e)}")
raise
def preprocess_audio(audio_file):
"""Preprocess the audio file to improve quality."""
try:
audio = AudioSegment.from_file(audio_file)
audio = audio.apply_gain(-audio.dBFS + (-20))
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
audio.export(temp_file.name, format="mp3")
logger.info(f"Audio preprocessed: {temp_file.name}")
return temp_file.name
except Exception as e:
logger.error(f"Error preprocessing audio: {str(e)}")
raise
@spaces.GPU()
def transcribe_audio(file):
"""Transcribe an audio or video file."""
try:
model_manager.check_whisper_initialized()
if isinstance(file, str) and file.startswith('http'):
file_path = download_social_media_video(file)
elif isinstance(file, str) and file.lower().endswith(('.mp4', '.avi', '.mov', '.mkv')):
file_path = convert_video_to_audio(file)
elif file is not None:
file_path = preprocess_audio(file.name)
else:
return ""
logger.info(f"Transcribing audio: {file_path}")
if not os.path.exists(file_path):
raise FileNotFoundError(f"Audio file not found: {file_path}")
with torch.inference_mode():
result = model_manager.whisper_model.transcribe(file_path)
transcription = result.get("text", "Error in transcription")
logger.info(f"Transcription completed: {transcription[:50]}...")
try:
if os.path.exists(file_path):
os.remove(file_path)
except Exception as e:
logger.warning(f"Could not remove temp file {file_path}: {str(e)}")
return transcription
except Exception as e:
logger.error(f"Error transcribing: {str(e)}")
return f"Error processing the file: {str(e)}"
@lru_cache(maxsize=32)
def read_document(document_path):
"""Read the content of a document."""
try:
if document_path.endswith(".pdf"):
doc = fitz.open(document_path)
return "\n".join([page.get_text() for page in doc])
elif document_path.endswith(".docx"):
doc = docx.Document(document_path)
return "\n".join([paragraph.text for paragraph in doc.paragraphs])
elif document_path.endswith((".xlsx", ".xls")):
return pd.read_excel(document_path).to_string()
elif document_path.endswith(".csv"):
return pd.read_csv(document_path).to_string()
else:
return "Unsupported file type. Please upload a PDF, DOCX, XLSX or CSV document."
except Exception as e:
logger.error(f"Error reading document: {str(e)}")
return f"Error reading document: {str(e)}"
@lru_cache(maxsize=32)
def read_url(url):
"""Read the content of a URL."""
if not url or url.strip() == "":
return ""
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url, headers=headers, timeout=15)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
for element in soup(["script", "style", "meta", "noscript", "iframe", "header", "footer", "nav"]):
element.extract()
main_content = soup.find("main") or soup.find("article") or soup.find("div", class_=["content", "main", "article"])
if main_content:
text = main_content.get_text(separator='\n', strip=True)
else:
text = soup.get_text(separator='\n', strip=True)
lines = [line.strip() for line in text.split('\n') if line.strip()]
text = '\n'.join(lines)
return text[:10000]
except Exception as e:
logger.error(f"Error reading URL: {str(e)}")
return f"Error reading URL: {str(e)}"
def process_social_content(url):
"""Process social media content."""
if not url or url.strip() == "":
return None
try:
text_content = read_url(url)
try:
video_content = transcribe_audio(url)
except Exception as e:
logger.error(f"Error processing video content: {str(e)}")
video_content = None
return {
"text": text_content,
"video": video_content
}
except Exception as e:
logger.error(f"Error processing social content: {str(e)}")
return None
@spaces.GPU()
def generate_news(instructions, facts, size, tone, *args):
"""Generate a news article based on provided data"""
try:
if isinstance(size, float):
size = int(size)
elif not isinstance(size, int):
size = 250
model_manager.check_llm_initialized()
knowledge_base = {
"instructions": instructions or "",
"facts": facts or "",
"document_content": [],
"audio_data": [],
"url_content": [],
"social_content": []
}
num_audios = 5 * 3
num_social_urls = 3 * 3
num_urls = 5
args = list(args)
while len(args) < (num_audios + num_social_urls + num_urls + 5):
args.append("")
audios = args[:num_audios]
social_urls = args[num_audios:num_audios+num_social_urls]
urls = args[num_audios+num_social_urls:num_audios+num_social_urls+num_urls]
documents = args[num_audios+num_social_urls+num_urls:]
logger.info("Processing URLs...")
for url in urls:
if url and isinstance(url, str) and url.strip():
content = read_url(url)
if content and not content.startswith("Error"):
knowledge_base["url_content"].append(content)
logger.info("Processing documents...")
for document in documents:
if document and hasattr(document, 'name'):
content = read_document(document.name)
if content and not content.startswith("Error"):
knowledge_base["document_content"].append(content)
logger.info("Processing audio/video files...")
for i in range(0, len(audios), 3):
if i+2 < len(audios):
audio_file, name, position = audios[i:i+3]
if audio_file and hasattr(audio_file, 'name'):
knowledge_base["audio_data"].append({
"audio": audio_file,
"name": name or "Unknown",
"position": position or "Not specified"
})
logger.info("Processing social media content...")
for i in range(0, len(social_urls), 3):
if i+2 < len(social_urls):
social_url, social_name, social_context = social_urls[i:i+3]
if social_url and isinstance(social_url, str) and social_url.strip():
social_content = process_social_content(social_url)
if social_content:
knowledge_base["social_content"].append({
"url": social_url,
"name": social_name or "Unknown",
"context": social_context or "Not specified",
"text": social_content.get("text", ""),
"video": social_content.get("video", "")
})
transcriptions_text = ""
raw_transcriptions = ""
logger.info("Transcribing audio...")
for idx, data in enumerate(knowledge_base["audio_data"]):
if data["audio"] is not None:
transcription = transcribe_audio(data["audio"])
if transcription and not transcription.startswith("Error"):
transcriptions_text += f'"{transcription}" - {data["name"]}, {data["position"]}\n\n'
raw_transcriptions += f'[Audio/Video {idx + 1}]: "{transcription}" - {data["name"]}, {data["position"]}\n\n'
for idx, data in enumerate(knowledge_base["social_content"]):
if data["text"] and not str(data["text"]).startswith("Error"):
text_excerpt = data["text"][:500] + "..." if len(data["text"]) > 500 else data["text"]
social_text = f'[Social media {idx+1} - text]: "{text_excerpt}" - {data["name"]}, {data["context"]}\n\n'
transcriptions_text += social_text
raw_transcriptions += social_text
if data["video"] and not str(data["video"]).startswith("Error"):
video_transcription = f'[Social media {idx+1} - video]: "{data["video"]}" - {data["name"]}, {data["context"]}\n\n'
transcriptions_text += video_transcription
raw_transcriptions += video_transcription
document_summaries = []
for idx, doc in enumerate(knowledge_base["document_content"]):
if len(doc) > 1000:
doc_excerpt = doc[:1000] + "... [document continues]"
else:
doc_excerpt = doc
document_summaries.append(f"[Document {idx+1}]: {doc_excerpt}")
document_content = "\n\n".join(document_summaries)
url_summaries = []
for idx, url_content in enumerate(knowledge_base["url_content"]):
if len(url_content) > 1000:
url_excerpt = url_content[:1000] + "... [content continues]"
else:
url_excerpt = url_content
url_summaries.append(f"[URL {idx+1}]: {url_excerpt}")
url_content = "\n\n".join(url_summaries)
prompt = f"""<s>[INST] You are a professional news writer. Write a news article based on the following information:
Instructions: {knowledge_base["instructions"]}
Facts: {knowledge_base["facts"]}
Additional content from documents:
{document_content}
Additional content from URLs:
{url_content}
Use these transcriptions as direct and indirect quotes:
{transcriptions_text}
Follow these requirements:
- Write a title
- Write a 15-word hook that complements the title
- Write the body with approximately {size} words
- Use a {tone} tone
- Answer the 5 Ws (Who, What, When, Where, Why) in the first paragraph
- Use at least 80% direct quotes (in quotation marks)
- Use proper journalistic style
- Do not invent information
- Be rigorous with the provided facts [/INST]"""
try:
logger.info("Generating news article...")
max_length = min(len(prompt.split()) + size * 2, 2048)
inputs = model_manager.tokenizer(
prompt,
return_tensors = "pt",
padding = True,
truncation = True,
max_length = 2048,
).to("cuda")
outputs = model_manager.model.generate(
**inputs,
max_new_tokens = size + 100,
temperature = 0.7,
do_sample = True,
pad_token_id = model_manager.tokenizer.eos_token_id,
)
generated_text = model_manager.tokenizer.decode(outputs[0], skip_special_tokens = True)
if "[/INST]" in generated_text:
news_article = generated_text.split("[/INST]")[1].strip()
else:
prompt_fragment = " ".join(prompt.split()[:50])
if prompt_fragment in generated_text:
news_article = generated_text[generated_text.find(prompt_fragment) + len(prompt_fragment):].strip()
else:
news_article = generated_text
logger.info(f"News generation completed: {len(news_article)} chars")
except Exception as gen_error:
logger.error(f"Error in text generation: {str(gen_error)}")
raise
return news_article, raw_transcriptions
except Exception as e:
logger.error(f"Error generating news: {str(e)}")
try:
model_manager.reset_models(force=True)
except Exception as reset_error:
logger.error(f"Failed to reset models: {str(reset_error)}")
return f"Error generating news: {str(e)}", "Error processing transcriptions."
def create_demo():
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# π° NewsIA - AI News Generator")
gr.Markdown("Create professional news articles from multiple sources.")
with gr.Row():
with gr.Column(scale=2):
instructions = gr.Textbox(
label="News Instructions",
placeholder="Enter specific instructions for news generation",
lines=2
)
facts = gr.Textbox(
label="Key Facts",
placeholder="Describe the most important facts to include",
lines=4
)
with gr.Row():
size = gr.Slider(
label="Approximate Length (words)",
minimum=100,
maximum=500,
value=250,
step=50
)
tone = gr.Dropdown(
label="News Tone",
choices=["serious", "neutral", "funny", "formal", "informal", "urgent"],
value="neutral"
)
with gr.Column(scale=3):
inputs_list = []
inputs_list.extend([instructions, facts, size, tone])
with gr.Tabs():
with gr.TabItem("π Documents"):
documents = []
for i in range(1, 6):
doc = gr.File(
label=f"Document {i}",
file_types=["pdf", "docx", "xlsx", "csv"],
file_count="single"
)
documents.append(doc)
inputs_list.append(doc)
with gr.TabItem("π Audio/Video"):
for i in range(1, 6):
with gr.Group():
gr.Markdown(f"**Source {i}**")
file = gr.File(
label=f"Audio/Video {i}",
file_types=["audio", "video"]
)
with gr.Row():
name = gr.Textbox(
label="Name",
placeholder="Interviewee name"
)
position = gr.Textbox(
label="Position/Role",
placeholder="Position or role"
)
inputs_list.extend([file, name, position])
with gr.TabItem("π URLs"):
for i in range(1, 6):
url = gr.Textbox(
label=f"URL {i}",
placeholder="https://..."
)
inputs_list.append(url)
with gr.TabItem("π± Social Media"):
for i in range(1, 4):
with gr.Group():
gr.Markdown(f"**Social Media {i}**")
social_url = gr.Textbox(
label="URL",
placeholder="https://..."
)
with gr.Row():
social_name = gr.Textbox(
label="Account/Name",
placeholder="Account or person name"
)
social_context = gr.Textbox(
label="Context",
placeholder="Relevant context"
)
inputs_list.extend([social_url, social_name, social_context])
with gr.Row():
generate_btn = gr.Button("β¨ Generate News", variant="primary")
reset_btn = gr.Button("π Clear All")
with gr.Tabs():
with gr.TabItem("π Generated News"):
news_output = gr.Textbox(
label="News Draft",
lines=15,
show_copy_button=True
)
with gr.TabItem("ποΈ Transcriptions"):
transcriptions_output = gr.Textbox(
label="Source Transcriptions",
lines=10,
show_copy_button=True
)
generate_btn.click(
fn=generate_news,
inputs=inputs_list,
outputs=[news_output, transcriptions_output]
)
def reset_all():
return [None]*len(inputs_list) + ["", ""]
reset_btn.click(
fn=reset_all,
inputs=None,
outputs=inputs_list + [news_output, transcriptions_output]
)
return demo
if __name__ == "__main__":
try:
model_manager.initialize_whisper()
except Exception as e:
logger.warning(f"Initial whisper model loading failed: {str(e)}")
demo = create_demo()
demo.queue(max_size=5)
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860
) |