Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -46,6 +46,9 @@ class ModelManager:
|
|
46 |
def initialize_models(self):
|
47 |
"""Initialize models with optimized settings"""
|
48 |
try:
|
|
|
|
|
|
|
49 |
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
|
50 |
if not HUGGINGFACE_TOKEN:
|
51 |
raise ValueError("HUGGINGFACE_TOKEN environment variable not set")
|
@@ -53,6 +56,14 @@ class ModelManager:
|
|
53 |
logger.info("Starting model initialization...")
|
54 |
model_name = "meta-llama/Llama-2-7b-chat-hf"
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
# Load tokenizer with optimized settings
|
57 |
logger.info("Loading tokenizer...")
|
58 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
@@ -63,43 +74,25 @@ class ModelManager:
|
|
63 |
)
|
64 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
65 |
|
66 |
-
# Initialize model with
|
67 |
-
logger.info("Loading model
|
68 |
-
model
|
69 |
-
model_name
|
70 |
token=HUGGINGFACE_TOKEN,
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
use_merged_kernels=True,
|
79 |
-
)
|
80 |
-
)
|
81 |
-
|
82 |
-
# Apply additional optimizations
|
83 |
-
model = FastLanguageModel.get_peft_model(
|
84 |
-
model,
|
85 |
-
r=16,
|
86 |
-
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
87 |
-
modules_to_save=None,
|
88 |
-
lora_alpha=16,
|
89 |
-
lora_dropout=0.05,
|
90 |
-
bias="none",
|
91 |
-
use_gradient_checkpointing=True,
|
92 |
-
random_state=42,
|
93 |
-
use_rslora=False,
|
94 |
-
use_dora=False,
|
95 |
)
|
96 |
|
97 |
-
self.model = model
|
98 |
-
logger.info("Model loaded successfully with Unsloth optimizations")
|
99 |
-
|
100 |
# Create optimized pipeline
|
101 |
logger.info("Creating pipeline...")
|
102 |
-
|
|
|
|
|
103 |
model=self.model,
|
104 |
tokenizer=self.tokenizer,
|
105 |
device_map="auto",
|
|
|
46 |
def initialize_models(self):
|
47 |
"""Initialize models with optimized settings"""
|
48 |
try:
|
49 |
+
import torch
|
50 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
51 |
+
|
52 |
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
|
53 |
if not HUGGINGFACE_TOKEN:
|
54 |
raise ValueError("HUGGINGFACE_TOKEN environment variable not set")
|
|
|
56 |
logger.info("Starting model initialization...")
|
57 |
model_name = "meta-llama/Llama-2-7b-chat-hf"
|
58 |
|
59 |
+
# Configure 4-bit quantization
|
60 |
+
bnb_config = BitsAndBytesConfig(
|
61 |
+
load_in_4bit=True,
|
62 |
+
bnb_4bit_use_double_quant=True,
|
63 |
+
bnb_4bit_quant_type="nf4",
|
64 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
65 |
+
)
|
66 |
+
|
67 |
# Load tokenizer with optimized settings
|
68 |
logger.info("Loading tokenizer...")
|
69 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
|
74 |
)
|
75 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
76 |
|
77 |
+
# Initialize model with optimized settings
|
78 |
+
logger.info("Loading model...")
|
79 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
80 |
+
model_name,
|
81 |
token=HUGGINGFACE_TOKEN,
|
82 |
+
device_map="auto",
|
83 |
+
torch_dtype=torch.float16,
|
84 |
+
quantization_config=bnb_config,
|
85 |
+
use_flash_attention_2=True,
|
86 |
+
use_cache=True,
|
87 |
+
attn_implementation="flash_attention_2",
|
88 |
+
low_cpu_mem_usage=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
|
|
|
|
|
|
|
91 |
# Create optimized pipeline
|
92 |
logger.info("Creating pipeline...")
|
93 |
+
from transformers import pipeline
|
94 |
+
self.news_generator = pipeline(
|
95 |
+
"text-generation",
|
96 |
model=self.model,
|
97 |
tokenizer=self.tokenizer,
|
98 |
device_map="auto",
|