Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -52,7 +52,7 @@ class ModelManager:
|
|
52 |
|
53 |
@spaces.GPU()
|
54 |
def initialize_llm(self):
|
55 |
-
"""Initialize LLM model with
|
56 |
try:
|
57 |
MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf"
|
58 |
|
@@ -64,36 +64,41 @@ class ModelManager:
|
|
64 |
)
|
65 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
logger.info("LLM initialized successfully")
|
99 |
self.last_used = time.time()
|
@@ -492,14 +497,17 @@ Follow these requirements:
|
|
492 |
with torch.inference_mode():
|
493 |
try:
|
494 |
logger.info("Generating news article...")
|
495 |
-
#
|
|
|
|
|
|
|
496 |
inputs = model_manager.tokenizer(
|
497 |
prompt,
|
498 |
return_tensors="pt",
|
499 |
add_special_tokens=False
|
500 |
).to(model_manager.model.device)
|
501 |
|
502 |
-
# Generate with
|
503 |
outputs = model_manager.model.generate(
|
504 |
**inputs,
|
505 |
max_new_tokens=max_new_tokens,
|
@@ -512,10 +520,24 @@ Follow these requirements:
|
|
512 |
)
|
513 |
|
514 |
# Decode the generated text
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
519 |
|
520 |
# Clean up the generated text
|
521 |
news_article = generated_text.strip()
|
|
|
52 |
|
53 |
@spaces.GPU()
|
54 |
def initialize_llm(self):
|
55 |
+
"""Initialize LLM model with optimization"""
|
56 |
try:
|
57 |
MODEL_NAME = "meta-llama/Llama-2-7b-chat-hf"
|
58 |
|
|
|
64 |
)
|
65 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
66 |
|
67 |
+
try:
|
68 |
+
# Try with unsloth first
|
69 |
+
logger.info("Attempting to load model with unsloth optimization...")
|
70 |
+
self.model, self.tokenizer = FastLanguageModel.from_pretrained(
|
71 |
+
model_name=MODEL_NAME,
|
72 |
+
token=HUGGINGFACE_TOKEN,
|
73 |
+
load_in_8bit=True,
|
74 |
+
max_seq_length=2048,
|
75 |
+
device_map="auto"
|
76 |
+
)
|
77 |
+
|
78 |
+
# Optimize with unsloth
|
79 |
+
self.model = FastLanguageModel.get_peft_model(
|
80 |
+
self.model,
|
81 |
+
r=8,
|
82 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
83 |
+
lora_alpha=8,
|
84 |
+
bias="none"
|
85 |
+
)
|
86 |
+
|
87 |
+
logger.info("Model loaded successfully with unsloth")
|
88 |
+
|
89 |
+
except Exception as unsloth_error:
|
90 |
+
# Fallback to standard transformers
|
91 |
+
logger.warning(f"Unsloth optimization failed: {str(unsloth_error)}. Falling back to standard model.")
|
92 |
+
from transformers import AutoModelForCausalLM
|
93 |
+
|
94 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
95 |
+
MODEL_NAME,
|
96 |
+
token=HUGGINGFACE_TOKEN,
|
97 |
+
device_map="auto",
|
98 |
+
torch_dtype=torch.float16,
|
99 |
+
load_in_8bit=True
|
100 |
+
)
|
101 |
+
logger.info("Model loaded with standard transformers")
|
102 |
|
103 |
logger.info("LLM initialized successfully")
|
104 |
self.last_used = time.time()
|
|
|
497 |
with torch.inference_mode():
|
498 |
try:
|
499 |
logger.info("Generating news article...")
|
500 |
+
# Check if we're using unsloth or standard model
|
501 |
+
is_unsloth = hasattr(model_manager.model, 'unsloth_module') if hasattr(model_manager.model, 'unsloth_module') else False
|
502 |
+
|
503 |
+
# Prepare inputs
|
504 |
inputs = model_manager.tokenizer(
|
505 |
prompt,
|
506 |
return_tensors="pt",
|
507 |
add_special_tokens=False
|
508 |
).to(model_manager.model.device)
|
509 |
|
510 |
+
# Generate with appropriate settings
|
511 |
outputs = model_manager.model.generate(
|
512 |
**inputs,
|
513 |
max_new_tokens=max_new_tokens,
|
|
|
520 |
)
|
521 |
|
522 |
# Decode the generated text
|
523 |
+
if is_unsloth:
|
524 |
+
# Unsloth specific decoding
|
525 |
+
generated_text = model_manager.tokenizer.decode(
|
526 |
+
outputs[0][inputs.input_ids.shape[1]:],
|
527 |
+
skip_special_tokens=True
|
528 |
+
)
|
529 |
+
else:
|
530 |
+
# Standard transformers decoding
|
531 |
+
generated_text = model_manager.tokenizer.decode(
|
532 |
+
outputs[0],
|
533 |
+
skip_special_tokens=True
|
534 |
+
)
|
535 |
+
# Remove the prompt from the generated text
|
536 |
+
prompt_text = model_manager.tokenizer.decode(
|
537 |
+
inputs.input_ids[0],
|
538 |
+
skip_special_tokens=True
|
539 |
+
)
|
540 |
+
generated_text = generated_text.replace(prompt_text, "")
|
541 |
|
542 |
# Clean up the generated text
|
543 |
news_article = generated_text.strip()
|