sams-tom commited on
Commit
a38df89
·
verified ·
1 Parent(s): c2e60f9

Create README.md

Browse files
Files changed (1) hide show
  1. unimodal-bathy-bnn/README.md +90 -0
unimodal-bathy-bnn/README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ metrics:
6
+ - accuracy
7
+ base_model:
8
+ - microsoft/resnet-50
9
+ pipeline_tag: image-classification
10
+ tags:
11
+ - AUV
12
+ - biology
13
+ - marine
14
+ - sonar
15
+ - bathymetry
16
+ - unimodal
17
+ - ecology
18
+ - robotics
19
+ ---
20
+
21
+ # Model Card: Unimodal Bathymetry Bayesian Neural Network Classifier
22
+
23
+ This model is a Bayesian Neural Network (BNN) classifier, specifically a `ResNet50Custom` implementation, designed for the classification of AUV bathymetry data. It utilizes a ResNet50 backbone, pre-trained on ImageNet, adapted for 3-channel bathymetry inputs. As a BNN, it provides uncertainty estimates alongside its predictions, which can be valuable for decision-making in uncertain underwater environments.
24
+
25
+ ---
26
+
27
+ ## Model Details
28
+
29
+ ### Model Description
30
+
31
+ This model is a Bayesian Neural Network (BNN) classifier, specifically a `ResNet50Custom` implementation, specialized for the classification of **AUV bathymetry data**. It leverages a **ResNet50** backbone (pre-trained on ImageNet-1K) as its primary feature extractor. The model's input layer (`conv1`) has been adapted to handle 3 channels, assuming the bathymetry data is preprocessed into a 3-channel image-like format (e.g., repeated grayscale or encoded depth/slope information).
32
+
33
+ As a **Bayesian Neural Network**, it provides valuable uncertainty estimates alongside its class predictions, making it suitable for applications where quantifying confidence in predictions is important.
34
+
35
+ * **Developed by:** Sams-Tom
36
+ * **Shared by:** Sams-Tom
37
+ * **Model type:** Bayesian Neural Network (BNN), Bathymetry Classifier (Computer Vision)
38
+ * **Language(s) (NLP):** N/A (Not an NLP model)
39
+ * **License:** MIT
40
+ * **Finetuned from model [optional]:** ResNet50 (pre-trained on ImageNet-1K)
41
+
42
+ ### Model Sources
43
+
44
+ * **Repository:** `https://huggingface.co/sams-tom/multimodal-auv-bathy-bnn-classifier`
45
+ * **Paper:** [In development]
46
+ * **Demo [optional]:** [More Information Needed: If there's a live demo or notebook, please link it here.]
47
+
48
+ ---
49
+
50
+
51
+ ## How to Get Started with the Model
52
+
53
+ To use this model, ensure you have `torch`, `huggingface_hub`, and `bayesian-torch` installed (`pip install torch huggingface_hub bayesian-torch`).
54
+
55
+ ```python
56
+ from transformers import AutoModel
57
+ import torch
58
+ import json
59
+ import os
60
+ from huggingface_hub import hf_hub_download
61
+
62
+
63
+ repo_id = "sams-tom/multimodal-auv-bathy-bnn-classifier"
64
+ model_subfolder = "unimodal-bathy-bnn"
65
+
66
+ # Load the BNN prior parameters that were used during training/conversion.
67
+ # These are essential for understanding the model's Bayesian properties.
68
+ bnn_params_path = hf_hub_download(repo_id=repo_id, filename=os.path.join(model_subfolder, "bnn_params.json"))
69
+ with open(bnn_params_path, "r") as f:
70
+ const_bnn_prior_parameters = json.load(f)
71
+ print(f"Loaded BNN Prior Parameters: {const_bnn_prior_parameters}")
72
+
73
+ # Load the model directly using AutoModel, specifying the subfolder.
74
+ # trust_remote_code=True is crucial because your model uses custom classes (ResNet50Custom etc.)
75
+ # which are defined in the 'model_definitions.py' file uploaded to the root of the repository.
76
+ model = AutoModel.from_pretrained(repo_id, subfolder=model_subfolder, trust_remote_code=True)
77
+ model.eval() # Set to evaluation mode
78
+
79
+ # Example inference with dummy bathymetry data
80
+ # Adjust dimensions (batch size, channels, height, width) based on your actual data
81
+ dummy_bathy_input = torch.randn(1, 3, 224, 224) # Example: (Batch, Channels, Height, Width)
82
+
83
+ with torch.no_grad():
84
+ outputs = model(dummy_bathy_input)
85
+ probabilities = torch.softmax(outputs, dim=-1) # Get class probabilities
86
+ predicted_class = torch.argmax(probabilities, dim=-1) # Get predicted class index
87
+
88
+ print(f"Output logits: {outputs}")
89
+ print(f"Predicted class probabilities: {probabilities}")
90
+ print(f"Predicted class index: {predicted_class.item()}")