|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:50000 |
|
- loss:CosineSimilarityLoss |
|
base_model: google-bert/bert-base-uncased |
|
widget: |
|
- source_sentence: Sometimes the people who represent themselves don't even know the |
|
significant facts of their case. |
|
sentences: |
|
- The law is very easy to understand, so representing yourself in court is the best |
|
way to win a case. |
|
- Sewage poured into upstairs windows from the streets while people whispered to |
|
each other. |
|
- His faith may be lacking. |
|
- source_sentence: When he married in 1901, he and his wife (Olga Knipper of the Moscow |
|
Art Theater) went directly from the ceremony to a honeymoon in a sanitarium. |
|
sentences: |
|
- if a person wants to eat you understand that |
|
- 'His wife has never went to a sanitarium. ' |
|
- The new system appears far more complex, but ultimately easier and more thorough. |
|
- source_sentence: it really is i heard something that their supposed to be starting |
|
a huge campaign in New York about um child abuse and stopping child abuse and |
|
it's supposed to be like it's starting there supposed to be like a big nationwide |
|
campaign and you know so hopefully that will take off and really do something |
|
i don't know there's just |
|
sentences: |
|
- The Washington Post was the first company to report on attempts of private companies |
|
growing embryos. |
|
- Me too? |
|
- It's unfortunate that nobody is organizing a child abuse campaign. |
|
- source_sentence: On the mainland, an invasion of even greater significance followed |
|
in 1580, when Philip II of Spain proclaimed himself king of Portugal and marched |
|
his armies across the border. |
|
sentences: |
|
- Some of the modern buildings that were erected in their place are not admired |
|
today. |
|
- Jon wanted to save them from the angry mob. |
|
- Philip II of Spain invaded Portugal. |
|
- source_sentence: The river plays a central role in all visits to Paris. |
|
sentences: |
|
- He said Dave Hanson. |
|
- The river is central to all vacations to Paris. |
|
- Trauma is the leading cause of alcohol abuse. |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on google-bert/bert-base-uncased |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7301988757371918 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7323168725786805 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# SentenceTransformer based on google-bert/bert-base-uncased |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("ryanhoangt/bert-base-uncased-mnli-cosine") |
|
# Run inference |
|
sentences = [ |
|
'The river plays a central role in all visits to Paris.', |
|
'The river is central to all vacations to Paris.', |
|
'Trauma is the leading cause of alcohol abuse.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7302 | |
|
| **spearman_cosine** | **0.7323** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 50,000 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 26.95 tokens</li><li>max: 189 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.11 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.34</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------| |
|
| <code>Conceptually cream skimming has two basic dimensions - product and geography.</code> | <code>Product and geography are what make cream skimming work. </code> | <code>0.0</code> | |
|
| <code>you know during the season and i guess at at your level uh you lose them to the next level if if they decide to recall the the parent team the Braves decide to call to recall a guy from triple A then a double A guy goes up to replace him and a single A guy goes up to replace him</code> | <code>You lose the things to the following level if the people recall.</code> | <code>1.0</code> | |
|
| <code>One of our number will carry out your instructions minutely.</code> | <code>A member of my team will execute your orders with immense precision.</code> | <code>1.0</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `num_train_epochs`: 1 |
|
- `warmup_steps`: 100 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 100 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | spearman_cosine | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0320 | 50 | 0.2752 | - | |
|
| 0.0640 | 100 | 0.1898 | - | |
|
| 0.0960 | 150 | 0.1733 | - | |
|
| 0.1280 | 200 | 0.1679 | - | |
|
| 0.1599 | 250 | 0.1743 | - | |
|
| 0.1919 | 300 | 0.1703 | - | |
|
| 0.2239 | 350 | 0.1599 | - | |
|
| 0.2559 | 400 | 0.1614 | - | |
|
| 0.2879 | 450 | 0.149 | - | |
|
| 0.3199 | 500 | 0.1555 | - | |
|
| 0.3519 | 550 | 0.1631 | - | |
|
| 0.3839 | 600 | 0.1537 | - | |
|
| 0.4159 | 650 | 0.1497 | - | |
|
| 0.4479 | 700 | 0.1512 | - | |
|
| 0.4798 | 750 | 0.157 | - | |
|
| 0.5118 | 800 | 0.1544 | - | |
|
| 0.5438 | 850 | 0.1502 | - | |
|
| 0.5758 | 900 | 0.1459 | - | |
|
| 0.6078 | 950 | 0.1476 | - | |
|
| 0.6398 | 1000 | 0.1439 | - | |
|
| 0.6718 | 1050 | 0.1508 | - | |
|
| 0.7038 | 1100 | 0.1444 | - | |
|
| 0.7358 | 1150 | 0.1457 | - | |
|
| 0.7678 | 1200 | 0.1486 | - | |
|
| 0.7997 | 1250 | 0.1485 | - | |
|
| 0.8317 | 1300 | 0.1419 | - | |
|
| 0.8637 | 1350 | 0.1406 | - | |
|
| 0.8957 | 1400 | 0.1407 | - | |
|
| 0.9277 | 1450 | 0.1434 | - | |
|
| 0.9597 | 1500 | 0.1365 | - | |
|
| 0.9917 | 1550 | 0.1465 | - | |
|
| -1 | -1 | - | 0.7323 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.12 |
|
- Sentence Transformers: 4.1.0 |
|
- Transformers: 4.52.2 |
|
- PyTorch: 2.6.0+cu124 |
|
- Accelerate: 1.7.0 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |