ryanhoangt commited on
Commit
347e3b9
·
verified ·
1 Parent(s): 6668352

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:50000
8
+ - loss:CosineSimilarityLoss
9
+ base_model: google-bert/bert-base-uncased
10
+ widget:
11
+ - source_sentence: Sometimes the people who represent themselves don't even know the
12
+ significant facts of their case.
13
+ sentences:
14
+ - The law is very easy to understand, so representing yourself in court is the best
15
+ way to win a case.
16
+ - Sewage poured into upstairs windows from the streets while people whispered to
17
+ each other.
18
+ - His faith may be lacking.
19
+ - source_sentence: When he married in 1901, he and his wife (Olga Knipper of the Moscow
20
+ Art Theater) went directly from the ceremony to a honeymoon in a sanitarium.
21
+ sentences:
22
+ - if a person wants to eat you understand that
23
+ - 'His wife has never went to a sanitarium. '
24
+ - The new system appears far more complex, but ultimately easier and more thorough.
25
+ - source_sentence: it really is i heard something that their supposed to be starting
26
+ a huge campaign in New York about um child abuse and stopping child abuse and
27
+ it's supposed to be like it's starting there supposed to be like a big nationwide
28
+ campaign and you know so hopefully that will take off and really do something
29
+ i don't know there's just
30
+ sentences:
31
+ - The Washington Post was the first company to report on attempts of private companies
32
+ growing embryos.
33
+ - Me too?
34
+ - It's unfortunate that nobody is organizing a child abuse campaign.
35
+ - source_sentence: On the mainland, an invasion of even greater significance followed
36
+ in 1580, when Philip II of Spain proclaimed himself king of Portugal and marched
37
+ his armies across the border.
38
+ sentences:
39
+ - Some of the modern buildings that were erected in their place are not admired
40
+ today.
41
+ - Jon wanted to save them from the angry mob.
42
+ - Philip II of Spain invaded Portugal.
43
+ - source_sentence: The river plays a central role in all visits to Paris.
44
+ sentences:
45
+ - He said Dave Hanson.
46
+ - The river is central to all vacations to Paris.
47
+ - Trauma is the leading cause of alcohol abuse.
48
+ pipeline_tag: sentence-similarity
49
+ library_name: sentence-transformers
50
+ metrics:
51
+ - pearson_cosine
52
+ - spearman_cosine
53
+ model-index:
54
+ - name: SentenceTransformer based on google-bert/bert-base-uncased
55
+ results:
56
+ - task:
57
+ type: semantic-similarity
58
+ name: Semantic Similarity
59
+ dataset:
60
+ name: Unknown
61
+ type: unknown
62
+ metrics:
63
+ - type: pearson_cosine
64
+ value: 0.7301988757371918
65
+ name: Pearson Cosine
66
+ - type: spearman_cosine
67
+ value: 0.7323168725786805
68
+ name: Spearman Cosine
69
+ ---
70
+
71
+ # SentenceTransformer based on google-bert/bert-base-uncased
72
+
73
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
74
+
75
+ ## Model Details
76
+
77
+ ### Model Description
78
+ - **Model Type:** Sentence Transformer
79
+ - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
80
+ - **Maximum Sequence Length:** 512 tokens
81
+ - **Output Dimensionality:** 768 dimensions
82
+ - **Similarity Function:** Cosine Similarity
83
+ <!-- - **Training Dataset:** Unknown -->
84
+ <!-- - **Language:** Unknown -->
85
+ <!-- - **License:** Unknown -->
86
+
87
+ ### Model Sources
88
+
89
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
90
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
91
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
92
+
93
+ ### Full Model Architecture
94
+
95
+ ```
96
+ SentenceTransformer(
97
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
98
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
99
+ )
100
+ ```
101
+
102
+ ## Usage
103
+
104
+ ### Direct Usage (Sentence Transformers)
105
+
106
+ First install the Sentence Transformers library:
107
+
108
+ ```bash
109
+ pip install -U sentence-transformers
110
+ ```
111
+
112
+ Then you can load this model and run inference.
113
+ ```python
114
+ from sentence_transformers import SentenceTransformer
115
+
116
+ # Download from the 🤗 Hub
117
+ model = SentenceTransformer("ryanhoangt/bert-base-uncased-mnli-cosine")
118
+ # Run inference
119
+ sentences = [
120
+ 'The river plays a central role in all visits to Paris.',
121
+ 'The river is central to all vacations to Paris.',
122
+ 'Trauma is the leading cause of alcohol abuse.',
123
+ ]
124
+ embeddings = model.encode(sentences)
125
+ print(embeddings.shape)
126
+ # [3, 768]
127
+
128
+ # Get the similarity scores for the embeddings
129
+ similarities = model.similarity(embeddings, embeddings)
130
+ print(similarities.shape)
131
+ # [3, 3]
132
+ ```
133
+
134
+ <!--
135
+ ### Direct Usage (Transformers)
136
+
137
+ <details><summary>Click to see the direct usage in Transformers</summary>
138
+
139
+ </details>
140
+ -->
141
+
142
+ <!--
143
+ ### Downstream Usage (Sentence Transformers)
144
+
145
+ You can finetune this model on your own dataset.
146
+
147
+ <details><summary>Click to expand</summary>
148
+
149
+ </details>
150
+ -->
151
+
152
+ <!--
153
+ ### Out-of-Scope Use
154
+
155
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
156
+ -->
157
+
158
+ ## Evaluation
159
+
160
+ ### Metrics
161
+
162
+ #### Semantic Similarity
163
+
164
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
165
+
166
+ | Metric | Value |
167
+ |:--------------------|:-----------|
168
+ | pearson_cosine | 0.7302 |
169
+ | **spearman_cosine** | **0.7323** |
170
+
171
+ <!--
172
+ ## Bias, Risks and Limitations
173
+
174
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
175
+ -->
176
+
177
+ <!--
178
+ ### Recommendations
179
+
180
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
181
+ -->
182
+
183
+ ## Training Details
184
+
185
+ ### Training Dataset
186
+
187
+ #### Unnamed Dataset
188
+
189
+ * Size: 50,000 training samples
190
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
191
+ * Approximate statistics based on the first 1000 samples:
192
+ | | sentence1 | sentence2 | label |
193
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
194
+ | type | string | string | float |
195
+ | details | <ul><li>min: 4 tokens</li><li>mean: 26.95 tokens</li><li>max: 189 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.11 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.34</li><li>max: 1.0</li></ul> |
196
+ * Samples:
197
+ | sentence1 | sentence2 | label |
198
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------|
199
+ | <code>Conceptually cream skimming has two basic dimensions - product and geography.</code> | <code>Product and geography are what make cream skimming work. </code> | <code>0.0</code> |
200
+ | <code>you know during the season and i guess at at your level uh you lose them to the next level if if they decide to recall the the parent team the Braves decide to call to recall a guy from triple A then a double A guy goes up to replace him and a single A guy goes up to replace him</code> | <code>You lose the things to the following level if the people recall.</code> | <code>1.0</code> |
201
+ | <code>One of our number will carry out your instructions minutely.</code> | <code>A member of my team will execute your orders with immense precision.</code> | <code>1.0</code> |
202
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
203
+ ```json
204
+ {
205
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
206
+ }
207
+ ```
208
+
209
+ ### Training Hyperparameters
210
+ #### Non-Default Hyperparameters
211
+
212
+ - `per_device_train_batch_size`: 32
213
+ - `per_device_eval_batch_size`: 32
214
+ - `num_train_epochs`: 1
215
+ - `warmup_steps`: 100
216
+ - `fp16`: True
217
+
218
+ #### All Hyperparameters
219
+ <details><summary>Click to expand</summary>
220
+
221
+ - `overwrite_output_dir`: False
222
+ - `do_predict`: False
223
+ - `eval_strategy`: no
224
+ - `prediction_loss_only`: True
225
+ - `per_device_train_batch_size`: 32
226
+ - `per_device_eval_batch_size`: 32
227
+ - `per_gpu_train_batch_size`: None
228
+ - `per_gpu_eval_batch_size`: None
229
+ - `gradient_accumulation_steps`: 1
230
+ - `eval_accumulation_steps`: None
231
+ - `torch_empty_cache_steps`: None
232
+ - `learning_rate`: 5e-05
233
+ - `weight_decay`: 0.0
234
+ - `adam_beta1`: 0.9
235
+ - `adam_beta2`: 0.999
236
+ - `adam_epsilon`: 1e-08
237
+ - `max_grad_norm`: 1.0
238
+ - `num_train_epochs`: 1
239
+ - `max_steps`: -1
240
+ - `lr_scheduler_type`: linear
241
+ - `lr_scheduler_kwargs`: {}
242
+ - `warmup_ratio`: 0.0
243
+ - `warmup_steps`: 100
244
+ - `log_level`: passive
245
+ - `log_level_replica`: warning
246
+ - `log_on_each_node`: True
247
+ - `logging_nan_inf_filter`: True
248
+ - `save_safetensors`: True
249
+ - `save_on_each_node`: False
250
+ - `save_only_model`: False
251
+ - `restore_callback_states_from_checkpoint`: False
252
+ - `no_cuda`: False
253
+ - `use_cpu`: False
254
+ - `use_mps_device`: False
255
+ - `seed`: 42
256
+ - `data_seed`: None
257
+ - `jit_mode_eval`: False
258
+ - `use_ipex`: False
259
+ - `bf16`: False
260
+ - `fp16`: True
261
+ - `fp16_opt_level`: O1
262
+ - `half_precision_backend`: auto
263
+ - `bf16_full_eval`: False
264
+ - `fp16_full_eval`: False
265
+ - `tf32`: None
266
+ - `local_rank`: 0
267
+ - `ddp_backend`: None
268
+ - `tpu_num_cores`: None
269
+ - `tpu_metrics_debug`: False
270
+ - `debug`: []
271
+ - `dataloader_drop_last`: False
272
+ - `dataloader_num_workers`: 0
273
+ - `dataloader_prefetch_factor`: None
274
+ - `past_index`: -1
275
+ - `disable_tqdm`: False
276
+ - `remove_unused_columns`: True
277
+ - `label_names`: None
278
+ - `load_best_model_at_end`: False
279
+ - `ignore_data_skip`: False
280
+ - `fsdp`: []
281
+ - `fsdp_min_num_params`: 0
282
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
283
+ - `fsdp_transformer_layer_cls_to_wrap`: None
284
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
285
+ - `deepspeed`: None
286
+ - `label_smoothing_factor`: 0.0
287
+ - `optim`: adamw_torch
288
+ - `optim_args`: None
289
+ - `adafactor`: False
290
+ - `group_by_length`: False
291
+ - `length_column_name`: length
292
+ - `ddp_find_unused_parameters`: None
293
+ - `ddp_bucket_cap_mb`: None
294
+ - `ddp_broadcast_buffers`: False
295
+ - `dataloader_pin_memory`: True
296
+ - `dataloader_persistent_workers`: False
297
+ - `skip_memory_metrics`: True
298
+ - `use_legacy_prediction_loop`: False
299
+ - `push_to_hub`: False
300
+ - `resume_from_checkpoint`: None
301
+ - `hub_model_id`: None
302
+ - `hub_strategy`: every_save
303
+ - `hub_private_repo`: None
304
+ - `hub_always_push`: False
305
+ - `gradient_checkpointing`: False
306
+ - `gradient_checkpointing_kwargs`: None
307
+ - `include_inputs_for_metrics`: False
308
+ - `include_for_metrics`: []
309
+ - `eval_do_concat_batches`: True
310
+ - `fp16_backend`: auto
311
+ - `push_to_hub_model_id`: None
312
+ - `push_to_hub_organization`: None
313
+ - `mp_parameters`:
314
+ - `auto_find_batch_size`: False
315
+ - `full_determinism`: False
316
+ - `torchdynamo`: None
317
+ - `ray_scope`: last
318
+ - `ddp_timeout`: 1800
319
+ - `torch_compile`: False
320
+ - `torch_compile_backend`: None
321
+ - `torch_compile_mode`: None
322
+ - `include_tokens_per_second`: False
323
+ - `include_num_input_tokens_seen`: False
324
+ - `neftune_noise_alpha`: None
325
+ - `optim_target_modules`: None
326
+ - `batch_eval_metrics`: False
327
+ - `eval_on_start`: False
328
+ - `use_liger_kernel`: False
329
+ - `eval_use_gather_object`: False
330
+ - `average_tokens_across_devices`: False
331
+ - `prompts`: None
332
+ - `batch_sampler`: batch_sampler
333
+ - `multi_dataset_batch_sampler`: proportional
334
+
335
+ </details>
336
+
337
+ ### Training Logs
338
+ | Epoch | Step | Training Loss | spearman_cosine |
339
+ |:------:|:----:|:-------------:|:---------------:|
340
+ | 0.0320 | 50 | 0.2752 | - |
341
+ | 0.0640 | 100 | 0.1898 | - |
342
+ | 0.0960 | 150 | 0.1733 | - |
343
+ | 0.1280 | 200 | 0.1679 | - |
344
+ | 0.1599 | 250 | 0.1743 | - |
345
+ | 0.1919 | 300 | 0.1703 | - |
346
+ | 0.2239 | 350 | 0.1599 | - |
347
+ | 0.2559 | 400 | 0.1614 | - |
348
+ | 0.2879 | 450 | 0.149 | - |
349
+ | 0.3199 | 500 | 0.1555 | - |
350
+ | 0.3519 | 550 | 0.1631 | - |
351
+ | 0.3839 | 600 | 0.1537 | - |
352
+ | 0.4159 | 650 | 0.1497 | - |
353
+ | 0.4479 | 700 | 0.1512 | - |
354
+ | 0.4798 | 750 | 0.157 | - |
355
+ | 0.5118 | 800 | 0.1544 | - |
356
+ | 0.5438 | 850 | 0.1502 | - |
357
+ | 0.5758 | 900 | 0.1459 | - |
358
+ | 0.6078 | 950 | 0.1476 | - |
359
+ | 0.6398 | 1000 | 0.1439 | - |
360
+ | 0.6718 | 1050 | 0.1508 | - |
361
+ | 0.7038 | 1100 | 0.1444 | - |
362
+ | 0.7358 | 1150 | 0.1457 | - |
363
+ | 0.7678 | 1200 | 0.1486 | - |
364
+ | 0.7997 | 1250 | 0.1485 | - |
365
+ | 0.8317 | 1300 | 0.1419 | - |
366
+ | 0.8637 | 1350 | 0.1406 | - |
367
+ | 0.8957 | 1400 | 0.1407 | - |
368
+ | 0.9277 | 1450 | 0.1434 | - |
369
+ | 0.9597 | 1500 | 0.1365 | - |
370
+ | 0.9917 | 1550 | 0.1465 | - |
371
+ | -1 | -1 | - | 0.7323 |
372
+
373
+
374
+ ### Framework Versions
375
+ - Python: 3.11.12
376
+ - Sentence Transformers: 4.1.0
377
+ - Transformers: 4.52.2
378
+ - PyTorch: 2.6.0+cu124
379
+ - Accelerate: 1.7.0
380
+ - Datasets: 3.2.0
381
+ - Tokenizers: 0.21.1
382
+
383
+ ## Citation
384
+
385
+ ### BibTeX
386
+
387
+ #### Sentence Transformers
388
+ ```bibtex
389
+ @inproceedings{reimers-2019-sentence-bert,
390
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
391
+ author = "Reimers, Nils and Gurevych, Iryna",
392
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
393
+ month = "11",
394
+ year = "2019",
395
+ publisher = "Association for Computational Linguistics",
396
+ url = "https://arxiv.org/abs/1908.10084",
397
+ }
398
+ ```
399
+
400
+ <!--
401
+ ## Glossary
402
+
403
+ *Clearly define terms in order to be accessible across audiences.*
404
+ -->
405
+
406
+ <!--
407
+ ## Model Card Authors
408
+
409
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
410
+ -->
411
+
412
+ <!--
413
+ ## Model Card Contact
414
+
415
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
416
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.52.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.52.2",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a42074e86e76ef59174e9fd608534b2c3e9e5e505a8f032cb9a91465344909de
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff