Checkpoints of the models benchmarked on the Well in the original paper.
AI & ML interests
Foundation Models for Science
Recent Activity
Organization Card
Polymathic AI
We advance Science through Multi‑Disciplinary AI
We usher in a new class of machine learning for scientific data, building models that can leverage shared concepts across disciplines. We aim to develop, train, and release such foundation models for use by researchers worldwide.
Collections
2
models
63

polymathic-ai/aion-base
Updated
•
188

polymathic-ai/UNetClassic-viscoelastic_instability
Updated
•
12

polymathic-ai/UNetClassic-turbulence_gravity_cooling
Updated
•
6

polymathic-ai/UNetClassic-supernova_explosion_64
Updated
•
6

polymathic-ai/UNetClassic-shear_flow
Updated
•
8

polymathic-ai/UNetClassic-rayleigh_taylor_instability
Updated
•
18

polymathic-ai/UNetClassic-rayleigh_benard
Updated
•
12

polymathic-ai/UNetClassic-planetswe
Updated
•
7

polymathic-ai/UNetClassic-MHD_64
Updated
•
5

polymathic-ai/UNetClassic-helmholtz_staircase
Updated
•
38
datasets
17
polymathic-ai/viscoelastic_instability
Updated
•
211
•
2
polymathic-ai/turbulent_radiative_layer_2D
Updated
•
187
•
2
polymathic-ai/turbulence_gravity_cooling
Updated
•
232
•
1
polymathic-ai/supernova_explosion_64
Updated
•
275
polymathic-ai/shear_flow
Updated
•
98
•
1
polymathic-ai/rayleigh_taylor_instability
Updated
•
191
•
2
polymathic-ai/rayleigh_benard
Updated
•
124
polymathic-ai/post_neutron_star_merger
Updated
•
112
polymathic-ai/planetswe
Updated
•
540
•
1
polymathic-ai/helmholtz_staircase
Updated
•
283