|
--- |
|
base_model: |
|
- SanghyukChun/ProLIP-ViT-B-16-DC-1B-12_8B |
|
datasets: |
|
- Lin-Chen/ShareGPT4V |
|
license: mit |
|
tags: |
|
- pytorch_model_hub_mixin |
|
- model_hub_mixin |
|
pipeline_tag: zero-shot-image-classification |
|
library_name: prolip |
|
--- |
|
|
|
## Official implementation of ViT-B/16 LongProLIP on ShareGPT4V, HYPE medium and DFN medium |
|
|
|
- This LongProLIP weight fine-tuned on ShareGPT4V + HYPE medium + DFN medium 128M samples |
|
- Pre-training datasets |
|
- ShareGPT4V / HYPE medium + DFN medium Seen samples 128M |
|
- DFN medium (https://huggingface.co/datasets/apf1/datafilteringnetworks_2b/tree/main) |
|
- HYPE medium (https://huggingface.co/dandelin/hype-sampler/tree/main/medium_scale) |
|
|
|
### Overview |
|
- LongProLIP Paper: https://arxiv.org/abs/2503.08048 |
|
- ProLIP Paper: https://huggingface.co/papers/2410.18857 |
|
- GitHub: https://github.com/naver-ai/prolip |
|
- More models are available at https://huggingface.co/collections/SanghyukChun/prolip-6712595dfc87fd8597350291 |
|
|
|
### Performance overview (main results) |
|
- Zero-shot ImageNet-1k top-1 accuracy: 74.52% (before fine-tuning: 74.6%) |
|
- Zero-shot ImageNet distribution shifts: 62.52% (before fine-tuning: 63.0%) |
|
- Zero-shot VTAB performance: 63.01% (before fine-tuning: 63.7%) |
|
- Zero-shot retrieval performance: 61.88% (before fine-tuning: 59.6%) |
|
- Average zero-shot performance on 38 tasks: 63.34% (before fine-tuning: 63.3%) |
|
|
|
### Performance overview (additional results) |
|
- Urban-1k: 77.5% (before fine-tuning: 65.4%) |
|
- ECCV mAP@R: 34.6% (before fine-tuning: 34.1%) |
|
|
|
```python |
|
import requests |
|
from PIL import Image |
|
|
|
import torch |
|
from prolip.model import ProLIPHF |
|
from transformers import CLIPProcessor |
|
from prolip.tokenizer import HFTokenizer |
|
|
|
import warnings |
|
warnings.simplefilter(action='ignore', category=FutureWarning) |
|
|
|
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16") |
|
model = ProLIPHF.from_pretrained("SanghyukChun/LongProLIP-ViT-B-16-S24M") |
|
tokenizer = HFTokenizer("timm/ViT-B-16-SigLIP", context_length=64, clean="canonicalize") |
|
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
inputs = processor(images=image, return_tensors="pt", padding=True) |
|
texts = ["A couple of cats laying on top of a pink blanket.", "A man walks through a flooded road during a rainstorm", "photo"] |
|
texts = tokenizer(texts) |
|
|
|
outputs = model(image=inputs["pixel_values"], text=texts) |
|
|
|
l2_logit = outputs["image_features"]["mean"] @ outputs["text_features"]["mean"].T |
|
i_unc = torch.exp(outputs["image_features"]["std"]).sum(dim=-1) |
|
t_unc = torch.exp(outputs["text_features"]["std"]).sum(dim=-1) |
|
csd_logit = l2_logit - 0.5 * t_unc |
|
csd_logit2 = l2_logit.T - 0.5 * i_unc |
|
print("Mean-only image-to-text logits (by L2 distance):", l2_logit) |
|
print("Uncertainty-aware image-to-text logits (by CSD):", csd_logit) |
|
print("Uncertainty-aware text-to-image logits (by CSD):", csd_logit2.T) |
|
print("Image uncertainty: ", i_unc) |
|
print("Text uncertainty: ", t_unc) |
|
``` |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@inproceedings{chun2025prolip, |
|
title={Probabilistic Language-Image Pre-Training}, |
|
author={Chun, Sanghyuk and Kim, Wonjae and Park, Song and Yun, Sangdoo}, |
|
year={2025}, |
|
booktitle={International Conference on Learning Representations (ICLR)}, |
|
} |
|
|
|
@inproceedings{chun2025longprolip, |
|
title={LongProLIP: A Probabilistic Vision-Language Model with Long Context Text}, |
|
author={Chun, Sanghyuk and Yun, Sangdoo}, |
|
year={2025}, |
|
booktitle={ICLR Workshop on Quantify Uncertainty and Hallucination in Foundation Models}, |
|
} |
|
``` |