metadata
base_model:
- SanghyukChun/ProLIP-ViT-B-16-DC-1B-12_8B
datasets:
- Lin-Chen/ShareGPT4V
license: mit
tags:
- pytorch_model_hub_mixin
- model_hub_mixin
pipeline_tag: zero-shot-image-classification
library_name: prolip
Official implementation of ViT-B/16 LongProLIP on ShareGPT4V, HYPE medium and DFN medium
- This LongProLIP weight fine-tuned on ShareGPT4V + HYPE medium + DFN medium 128M samples
- Pre-training datasets
- ShareGPT4V / HYPE medium + DFN medium Seen samples 128M
- DFN medium (https://huggingface.co/datasets/apf1/datafilteringnetworks_2b/tree/main)
- HYPE medium (https://huggingface.co/dandelin/hype-sampler/tree/main/medium_scale)
Overview
- LongProLIP Paper: https://arxiv.org/abs/2503.08048
- ProLIP Paper: https://huggingface.co/papers/2410.18857
- GitHub: https://github.com/naver-ai/prolip
- More models are available at https://huggingface.co/collections/SanghyukChun/prolip-6712595dfc87fd8597350291
Performance overview (main results)
- Zero-shot ImageNet-1k top-1 accuracy: 74.52% (before fine-tuning: 74.6%)
- Zero-shot ImageNet distribution shifts: 62.52% (before fine-tuning: 63.0%)
- Zero-shot VTAB performance: 63.01% (before fine-tuning: 63.7%)
- Zero-shot retrieval performance: 61.88% (before fine-tuning: 59.6%)
- Average zero-shot performance on 38 tasks: 63.34% (before fine-tuning: 63.3%)
Performance overview (additional results)
- Urban-1k: 77.5% (before fine-tuning: 65.4%)
- ECCV mAP@R: 34.6% (before fine-tuning: 34.1%)
import requests
from PIL import Image
import torch
from prolip.model import ProLIPHF
from transformers import CLIPProcessor
from prolip.tokenizer import HFTokenizer
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
model = ProLIPHF.from_pretrained("SanghyukChun/LongProLIP-ViT-B-16-S24M")
tokenizer = HFTokenizer("timm/ViT-B-16-SigLIP", context_length=64, clean="canonicalize")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt", padding=True)
texts = ["A couple of cats laying on top of a pink blanket.", "A man walks through a flooded road during a rainstorm", "photo"]
texts = tokenizer(texts)
outputs = model(image=inputs["pixel_values"], text=texts)
l2_logit = outputs["image_features"]["mean"] @ outputs["text_features"]["mean"].T
i_unc = torch.exp(outputs["image_features"]["std"]).sum(dim=-1)
t_unc = torch.exp(outputs["text_features"]["std"]).sum(dim=-1)
csd_logit = l2_logit - 0.5 * t_unc
csd_logit2 = l2_logit.T - 0.5 * i_unc
print("Mean-only image-to-text logits (by L2 distance):", l2_logit)
print("Uncertainty-aware image-to-text logits (by CSD):", csd_logit)
print("Uncertainty-aware text-to-image logits (by CSD):", csd_logit2.T)
print("Image uncertainty: ", i_unc)
print("Text uncertainty: ", t_unc)
Citation
@inproceedings{chun2025prolip,
title={Probabilistic Language-Image Pre-Training},
author={Chun, Sanghyuk and Kim, Wonjae and Park, Song and Yun, Sangdoo},
year={2025},
booktitle={International Conference on Learning Representations (ICLR)},
}
@inproceedings{chun2025longprolip,
title={LongProLIP: A Probabilistic Vision-Language Model with Long Context Text},
author={Chun, Sanghyuk and Yun, Sangdoo},
year={2025},
booktitle={ICLR Workshop on Quantify Uncertainty and Hallucination in Foundation Models},
}