File size: 18,635 Bytes
cfe2b41
5be4a35
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe2b41
 
5be4a35
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe2b41
27d56fa
1c9534d
 
 
 
 
 
 
 
 
5be4a35
 
 
 
 
 
 
 
 
356ba00
27d56fa
 
5be4a35
 
 
 
 
 
 
 
1c9534d
 
 
5be4a35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c9534d
 
 
 
 
 
 
b23a516
1c9534d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5be4a35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27d56fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
---
library_name: vllm
language:
- ar
- de
- en
- es
- fr
- hi
- id
- it
- pt
- th
- tl
- vi
base_model:
- meta-llama/Llama-4-Scout-17B-16E-Instruct
pipeline_tag: image-text-to-text
tags:
- facebook
- meta
- pytorch
- llama
- llama4
- neuralmagic
- redhat
- llmcompressor
- quantized
- FP8
license: other
license_name: llama4
---

<h1 style="display: flex; align-items: center; gap: 10px; margin: 0;">
  Llama-4-Scout-17B-16E-Instruct-FP8-dynamic
  <img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" />
</h1>
  
<a href="https://www.redhat.com/en/products/ai/validated-models" target="_blank" style="margin: 0; padding: 0;">
<img src="https://www.redhat.com/rhdc/managed-files/Validated_badge-Dark.png" alt="Validated Badge" width="250" style="margin: 0; padding: 0;" />
</a>

## Model Overview
- **Model Architecture:** Llama4ForConditionalGeneration
  - **Input:** Text / Image
  - **Output:** Text
- **Model Optimizations:**
  - **Activation quantization:** FP8
  - **Weight quantization:** FP8
- **Release Date:** 04/15/2025
- **Version:** 1.0
- **Model Developers:** Red Hat (Neural Magic)


### Model Optimizations

This model was obtained by quantizing activations and weights of [Llama-4-Scout-17B-16E-Instruct](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct) to FP8 data type.
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
Weight quantization also reduces disk size requirements by approximately 50%. The [llm-compressor](https://github.com/vllm-project/llm-compressor) library is used for quantization.

## Deployment

This model can be deployed efficiently on vLLM, Red Hat Enterprise Linux AI, and Openshift AI, as shown in the example below.

Deploy on <strong>vLLM</strong>

```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic"
number_gpus = 4

sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

prompt = "Give me a short introduction to large language model."

llm = LLM(model=model_id, tensor_parallel_size=number_gpus)

outputs = llm.generate(prompt, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)
```

vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.


<details>
  <summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary>
  
```bash
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
 --ipc=host \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
--name=vllm \
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
vllm serve \
--tensor-parallel-size 8 \
--max-model-len 32768  \
--enforce-eager --model RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic
```
</details>

<details>
  <summary>Deploy on <strong>Red Hat Enterprise Linux AI</strong></summary>
  
```bash
# Download model from Red Hat Registry via docker
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified.
ilab model download --repository docker://registry.redhat.io/rhelai1/llama-4-scout-17b-16e-instruct-fp8-dynamic:1.5
```

```bash
# Serve model via ilab
ilab model serve --model-path ~/.cache/instructlab/models/llama-4-scout-17b-16e-instruct-fp8-dynamic
  
# Chat with model
ilab model chat --model ~/.cache/instructlab/models/llama-4-scout-17b-16e-instruct-fp8-dynamic
```
See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details.
</details>

<details>
  <summary>Deploy on <strong>Red Hat Openshift AI</strong></summary>
  
```python
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
 name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
 annotations:
   openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
   opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
 labels:
   opendatahub.io/dashboard: 'true'
spec:
 annotations:
   prometheus.io/port: '8080'
   prometheus.io/path: '/metrics'
 multiModel: false
 supportedModelFormats:
   - autoSelect: true
     name: vLLM
 containers:
   - name: kserve-container
     image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
     command:
       - python
       - -m
       - vllm.entrypoints.openai.api_server
     args:
       - "--port=8080"
       - "--model=/mnt/models"
       - "--served-model-name={{.Name}}"
     env:
       - name: HF_HOME
         value: /tmp/hf_home
     ports:
       - containerPort: 8080
         protocol: TCP
```

```python
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
  annotations:
    openshift.io/display-name: Llama-4-Scout-17B-16E-Instruct-FP8-dynamic # OPTIONAL CHANGE
    serving.kserve.io/deploymentMode: RawDeployment
  name: Llama-4-Scout-17B-16E-Instruct-FP8-dynamic          # specify model name. This value will be used to invoke the model in the payload
  labels:
    opendatahub.io/dashboard: 'true'
spec:
  predictor:
    maxReplicas: 1
    minReplicas: 1
    model:
      modelFormat:
        name: vLLM
      name: ''
      resources:
        limits:
          cpu: '2'			# this is model specific
          memory: 8Gi		# this is model specific
          nvidia.com/gpu: '1'	# this is accelerator specific
        requests:			# same comment for this block
          cpu: '1'
          memory: 4Gi
          nvidia.com/gpu: '1'
      runtime: vllm-cuda-runtime	# must match the ServingRuntime name above
      storageUri: oci://registry.redhat.io/rhelai1/modelcar-llama-4-scout-17b-16e-instruct-fp8-dynamic:1.5
    tolerations:
    - effect: NoSchedule
      key: nvidia.com/gpu
      operator: Exists
```

```bash
# make sure first to be in the project where you want to deploy the model
# oc project <project-name>

# apply both resources to run model

# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml

# Apply the InferenceService
oc apply -f qwen-inferenceservice.yaml
```

```python
# Replace <inference-service-name> and <cluster-ingress-domain> below:
# - Run `oc get inferenceservice` to find your URL if unsure.

# Call the server using curl:
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
        -H "Content-Type: application/json" \
        -d '{
    "model": "Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",
    "stream": true,
    "stream_options": {
        "include_usage": true
    },
    "max_tokens": 1,
    "messages": [
        {
            "role": "user",
            "content": "How can a bee fly when its wings are so small?"
        }
    ]
}'

```

See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details.
</details>

## Creation

<details>
  <summary>Creation details</summary>
  This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. 


```python
#!/usr/bin/env python3
"""
This script loads an LLM model and applies FP8 quantization to
weights and activations. Activations are dynamically quantized, i.e. during
actual runtime.
"""

import argparse
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, Llama4ForConditionalGeneration
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor import oneshot
from compressed_tensors.quantization import (
    QuantizationScheme,
    QuantizationArgs,
    QuantizationType,
    QuantizationStrategy,
)


def parse_arguments():
    """Parse command line arguments."""
    parser = argparse.ArgumentParser(description="Quantize a causal language model")
    parser.add_argument(
        "--model_path",
        type=str,
        required=True,
        help="Path to the pre-trained model",
    )
    parser.add_argument(
        "--quant_path",
        type=str,
        required=True,
        help="Output path for the quantized model",
    )
    return parser.parse_args()


def main():
    """Main function to load and quantize the model."""
    args = parse_arguments()

    print(f"Loading model from {args.model_path}...")
    model = Llama4ForConditionalGeneration.from_pretrained(
        args.model_path,
        device_map="auto",
        torch_dtype="auto",
        trust_remote_code=True,
    )

    quant_scheme = QuantizationScheme(
        targets=["Linear"],
        weights=QuantizationArgs(
            num_bits=8,
            type=QuantizationType.FLOAT,
            strategy=QuantizationStrategy.CHANNEL,
            symmetric=True,
            observer="mse",
        ),
        input_activations=QuantizationArgs(
            num_bits=8,
            type=QuantizationType.FLOAT,
            strategy=QuantizationStrategy.TOKEN,
            symmetric=True,
            dynamic=True,
        ),
        output_activations=None,
    )

    recipe = QuantizationModifier(
        targets="Linear",
        config_groups={"group_0": quant_scheme},
        ignore=[
            're:.*lm_head',
            're:.*self_attn',
            're:.*router',
            're:.*vision_model',
            're:.*multi_modal_projector',
        ]
    )

    print("Applying quantization...")
    oneshot(
        model=model,
        recipe=recipe,
        trust_remote_code_model=True,
    )

    model.save_pretrained(args.quant_path, save_compressed=True, skip_compression_stats=True, disable_sparse_compression=True)
    print(f"Quantized model saved to {args.quant_path}")


if __name__ == "__main__":
    main()
```
</details>
 


## Evaluation

The model was evaluated on the OpenLLM leaderboard tasks (v1 and v2), long context RULER, multimodal MMMU, and multimodal ChartQA.
All evaluations are obtained through [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).

<details>
  <summary>Evaluation details</summary>

  **OpenLLM v1**
  ```
  lm_eval \
    --model vllm \
    --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8,gpu_memory_utilization=0.7,enable_chunked_prefill=True,trust_remote_code=True \
    --tasks openllm \
    --batch_size auto 
  ```

  **OpenLLM v2**
  ```
  lm_eval \
    --model vllm \
    --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=8,gpu_memory_utilization=0.5,enable_chunked_prefill=True,trust_remote_code=True \
    --tasks leaderboard \
    --apply_chat_template \
    --fewshot_as_multiturn \
    --batch_size auto 
  ```

  **Long Context RULER**
  ```
  lm_eval \
    --model vllm \
    --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=524288,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
    --tasks ruler \
    --metadata='{"max_seq_lengths":[131072]}' \
    --batch_size auto 
  ```

  **Multimodal MMMU**
  ```
  lm_eval \
    --model vllm-vlm \
    --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \
    --tasks mmmu_val \
    --apply_chat_template \
    --batch_size auto 
  ```

  **Multimodal ChartQA**
  ```
  export VLLM_MM_INPUT_CACHE_GIB=8
  lm_eval \
    --model vllm-vlm \
    --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \
    --tasks chartqa \
    --apply_chat_template \
    --batch_size auto 
  ```

</details>

### Accuracy

|                                                | Recovery (%) | meta-llama/Llama-4-Scout-17B-16E-Instruct | RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic<br>(this model) |
| ---------------------------------------------- | :-----------: | :---------------------------------------: | :-----------------------------------------------------------------: |
| ARC-Challenge<br>25-shot                       | 100.36       | 69.37                                     | 69.62                                                               |
| GSM8k<br>5-shot                                | 99.24        | 90.45                                     | 89.76                                                               |
| HellaSwag<br>10-shot                           | 99.94        | 85.23                                     | 85.18                                                               |
| MMLU<br>5-shot                                 | 99.94        | 80.54                                     | 80.49                                                               |
| TruthfulQA<br>0-shot                           | 99.17        | 61.41                                     | 60.90                                                               |
| WinoGrande<br>5-shot                           | 98.88        | 77.90                                     | 77.03                                                               |
| **OpenLLM v1<br>Average Score**                    | **99.59**        | **77.48**                                     | **77.16**                                                               |
| IFEval<br>0-shot<br>avg of inst and prompt acc | 100.91       | 86.90                                     | 87.69                                                               |
| Big Bench Hard<br>3-shot                       | 99.82        | 65.13                                     | 65.01                                                               |
| Math Lvl 5<br>4-shot                           | 98.82        | 57.78                                     | 57.10                                                               |
| GPQA<br>0-shot                                 | 100.53       | 31.88                                     | 32.05                                                               |
| MuSR<br>0-shot                                 | 102.18       | 42.20                                     | 43.12                                                               |
| MMLU-Pro<br>5-shot                             | 99.82        | 55.70                                     | 55.60                                                               |
| **OpenLLM v2<br>Average Score**                    | **100.28**       | **56.60**                                     | **56.76**                                                               |
| RULER<br>seqlen = 131072<br>niah_multikey_1    | 101.36       | 88.20                                     | 89.40                                                               |
| RULER<br>seqlen = 131072<br>niah_multikey_2    | 100.72       | 83.60                                     | 84.20                                                               |
| RULER<br>seqlen = 131072<br>niah_multikey_3    | 96.19        | 78.80                                     | 75.80                                                               |
| RULER<br>seqlen = 131072<br>niah_multiquery    | 100.79       | 95.40                                     | 96.15                                                               |
| RULER<br>seqlen = 131072<br>niah_multivalue    | 97.22        | 73.75                                     | 71.70                                                               |
| RULER<br>seqlen = 131072<br>niah_single_1      | 100.00       | 100.00                                    | 100.00                                                              |
| RULER<br>seqlen = 131072<br>niah_single_2      | 100.00       | 99.80                                     | 99.80                                                               |
| RULER<br>seqlen = 131072<br>niah_single_3      | 100.00       | 99.80                                     | 99.80                                                               |
| RULER<br>seqlen = 131072<br>ruler_cwe          | 96.19        | 39.42                                     | 37.92                                                               |
| RULER<br>seqlen = 131072<br>ruler_fwe          | 98.86        | 92.93                                     | 91.87                                                               |
| RULER<br>seqlen = 131072<br>ruler_qa_hotpot    | 100.00       | 48.20                                     | 48.20                                                               |
| RULER<br>seqlen = 131072<br>ruler_qa_squad     | 98.81        | 53.57                                     | 52.93                                                               |
| RULER<br>seqlen = 131072<br>ruler_qa_vt        | 100.35       | 92.28                                     | 92.60                                                               |
| **RULER<br>seqlen = 131072<br>Average Score**      | **99.49**        | **80.44**                                     | **80.03**                                                               |
| MMMU<br>0-shot                                 | 97.92        | 53.44                                     | 52.33                                                               |
| ChartQA<br>0-shot<br>exact_match               | 100.12       | 65.88                                     | 65.96                                                               |
| ChartQA<br>0-shot<br>relaxed_accuracy          | 99.69        | 88.92                                     | 88.64                                                               |
| **Multimodal Average Score**                       | **99.38**        | **69.41**                                     | **68.98**                                                               |