Update README.md
Browse files
README.md
CHANGED
@@ -1,21 +1,286 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
base_model:
|
3 |
- meta-llama/Llama-4-Scout-17B-16E-Instruct
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
-
## More details and evals coming soon...
|
6 |
|
7 |
-
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|Tasks|Version| Filter |n-shot| Metric | |Value | |Stderr|
|
12 |
-
|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|
13 |
-
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.9189|± |0.0075|
|
14 |
-
| | |strict-match | 5|exact_match|↑ |0.9014|± |0.0082|
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|Tasks|Version| Filter |n-shot| Metric | |Value | |Stderr|
|
19 |
-
|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|
20 |
-
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.9219|± |0.0074|
|
21 |
-
| | |strict-match | 5|exact_match|↑ |0.9075|± |0.0080|
|
|
|
1 |
---
|
2 |
+
library_name: vllm
|
3 |
+
language:
|
4 |
+
- ar
|
5 |
+
- de
|
6 |
+
- en
|
7 |
+
- es
|
8 |
+
- fr
|
9 |
+
- hi
|
10 |
+
- id
|
11 |
+
- it
|
12 |
+
- pt
|
13 |
+
- th
|
14 |
+
- tl
|
15 |
+
- vi
|
16 |
base_model:
|
17 |
- meta-llama/Llama-4-Scout-17B-16E-Instruct
|
18 |
+
pipeline_tag: image-text-to-text
|
19 |
+
tags:
|
20 |
+
- facebook
|
21 |
+
- meta
|
22 |
+
- pytorch
|
23 |
+
- llama
|
24 |
+
- llama4
|
25 |
+
- neuralmagic
|
26 |
+
- redhat
|
27 |
+
- llmcompressor
|
28 |
+
- quantized
|
29 |
+
- FP8
|
30 |
+
license: other
|
31 |
+
license_name: llama4
|
32 |
---
|
|
|
33 |
|
34 |
+
# Llama-4-Scout-17B-16E-Instruct-FP8-dynamic
|
35 |
|
36 |
+
## Model Overview
|
37 |
+
- **Model Architecture:** Llama4ForConditionalGeneration
|
38 |
+
- **Input:** Text / Image
|
39 |
+
- **Output:** Text
|
40 |
+
- **Model Optimizations:**
|
41 |
+
- **Activation quantization:** FP8
|
42 |
+
- **Weight quantization:** FP8
|
43 |
+
- **Release Date:** 04/15/2025
|
44 |
+
- **Version:** 1.0
|
45 |
+
- **Model Developers:** RedHat (Neural Magic)
|
46 |
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
### Model Optimizations
|
49 |
+
|
50 |
+
This model was obtained by quantizing activations and weights of [Llama-4-Scout-17B-16E-Instruct](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct) to FP8 data type.
|
51 |
+
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
|
52 |
+
Weight quantization also reduces disk size requirements by approximately 50%. The [llm-compressor](https://github.com/vllm-project/llm-compressor) library is used for quantization.
|
53 |
+
|
54 |
+
|
55 |
+
## Deployment
|
56 |
+
|
57 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
58 |
+
|
59 |
+
```python
|
60 |
+
from vllm import LLM, SamplingParams
|
61 |
+
from transformers import AutoTokenizer
|
62 |
+
|
63 |
+
model_id = "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic"
|
64 |
+
number_gpus = 4
|
65 |
+
|
66 |
+
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
|
67 |
+
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
69 |
+
|
70 |
+
prompt = "Give me a short introduction to large language model."
|
71 |
+
|
72 |
+
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
|
73 |
+
|
74 |
+
outputs = llm.generate(prompt, sampling_params)
|
75 |
+
|
76 |
+
generated_text = outputs[0].outputs[0].text
|
77 |
+
print(generated_text)
|
78 |
+
```
|
79 |
+
|
80 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
81 |
+
|
82 |
+
## Creation
|
83 |
+
|
84 |
+
<details>
|
85 |
+
<summary>Creation details</summary>
|
86 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
87 |
+
|
88 |
+
|
89 |
+
```python
|
90 |
+
#!/usr/bin/env python3
|
91 |
+
"""
|
92 |
+
This script loads an LLM model and applies FP8 quantization to
|
93 |
+
weights and activations. Activations are dynamically quantized, i.e. during
|
94 |
+
actual runtime.
|
95 |
+
"""
|
96 |
+
|
97 |
+
import argparse
|
98 |
+
import torch
|
99 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Llama4ForConditionalGeneration
|
100 |
+
from llmcompressor.modifiers.quantization import QuantizationModifier
|
101 |
+
from llmcompressor import oneshot
|
102 |
+
from compressed_tensors.quantization import (
|
103 |
+
QuantizationScheme,
|
104 |
+
QuantizationArgs,
|
105 |
+
QuantizationType,
|
106 |
+
QuantizationStrategy,
|
107 |
+
)
|
108 |
+
|
109 |
+
|
110 |
+
def parse_arguments():
|
111 |
+
"""Parse command line arguments."""
|
112 |
+
parser = argparse.ArgumentParser(description="Quantize a causal language model")
|
113 |
+
parser.add_argument(
|
114 |
+
"--model_path",
|
115 |
+
type=str,
|
116 |
+
required=True,
|
117 |
+
help="Path to the pre-trained model",
|
118 |
+
)
|
119 |
+
parser.add_argument(
|
120 |
+
"--quant_path",
|
121 |
+
type=str,
|
122 |
+
required=True,
|
123 |
+
help="Output path for the quantized model",
|
124 |
+
)
|
125 |
+
return parser.parse_args()
|
126 |
+
|
127 |
+
|
128 |
+
def main():
|
129 |
+
"""Main function to load and quantize the model."""
|
130 |
+
args = parse_arguments()
|
131 |
+
|
132 |
+
print(f"Loading model from {args.model_path}...")
|
133 |
+
model = Llama4ForConditionalGeneration.from_pretrained(
|
134 |
+
args.model_path,
|
135 |
+
device_map="auto",
|
136 |
+
torch_dtype="auto",
|
137 |
+
trust_remote_code=True,
|
138 |
+
)
|
139 |
+
|
140 |
+
quant_scheme = QuantizationScheme(
|
141 |
+
targets=["Linear"],
|
142 |
+
weights=QuantizationArgs(
|
143 |
+
num_bits=8,
|
144 |
+
type=QuantizationType.FLOAT,
|
145 |
+
strategy=QuantizationStrategy.CHANNEL,
|
146 |
+
symmetric=True,
|
147 |
+
observer="mse",
|
148 |
+
),
|
149 |
+
input_activations=QuantizationArgs(
|
150 |
+
num_bits=8,
|
151 |
+
type=QuantizationType.FLOAT,
|
152 |
+
strategy=QuantizationStrategy.TOKEN,
|
153 |
+
symmetric=True,
|
154 |
+
dynamic=True,
|
155 |
+
),
|
156 |
+
output_activations=None,
|
157 |
+
)
|
158 |
+
|
159 |
+
recipe = QuantizationModifier(
|
160 |
+
targets="Linear",
|
161 |
+
config_groups={"group_0": quant_scheme},
|
162 |
+
ignore=[
|
163 |
+
're:.*lm_head',
|
164 |
+
're:.*self_attn',
|
165 |
+
're:.*router',
|
166 |
+
're:.*vision_model',
|
167 |
+
're:.*multi_modal_projector',
|
168 |
+
]
|
169 |
+
)
|
170 |
+
|
171 |
+
print("Applying quantization...")
|
172 |
+
oneshot(
|
173 |
+
model=model,
|
174 |
+
recipe=recipe,
|
175 |
+
trust_remote_code_model=True,
|
176 |
+
)
|
177 |
+
|
178 |
+
model.save_pretrained(args.quant_path, save_compressed=True, skip_compression_stats=True, disable_sparse_compression=True)
|
179 |
+
print(f"Quantized model saved to {args.quant_path}")
|
180 |
+
|
181 |
+
|
182 |
+
if __name__ == "__main__":
|
183 |
+
main()
|
184 |
+
```
|
185 |
+
</details>
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
## Evaluation
|
190 |
+
|
191 |
+
The model was evaluated on the OpenLLM leaderboard tasks (v1 and v2), long context RULER, multimodal MMMU, and multimodal ChartQA.
|
192 |
+
All evaluations are obtained through [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
|
193 |
+
|
194 |
+
<details>
|
195 |
+
<summary>Evaluation details</summary>
|
196 |
+
|
197 |
+
**OpenLLM v1**
|
198 |
+
```
|
199 |
+
lm_eval \
|
200 |
+
--model vllm \
|
201 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8,gpu_memory_utilization=0.7,enable_chunked_prefill=True,trust_remote_code=True \
|
202 |
+
--tasks openllm \
|
203 |
+
--batch_size auto
|
204 |
+
```
|
205 |
+
|
206 |
+
**OpenLLM v2**
|
207 |
+
```
|
208 |
+
lm_eval \
|
209 |
+
--model vllm \
|
210 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=8,gpu_memory_utilization=0.5,enable_chunked_prefill=True,trust_remote_code=True \
|
211 |
+
--tasks leaderboard \
|
212 |
+
--apply_chat_template \
|
213 |
+
--fewshot_as_multiturn \
|
214 |
+
--batch_size auto
|
215 |
+
```
|
216 |
+
|
217 |
+
**Long Context RULER**
|
218 |
+
```
|
219 |
+
lm_eval \
|
220 |
+
--model vllm \
|
221 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=524288,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
|
222 |
+
--tasks ruler \
|
223 |
+
--metadata='{"max_seq_lengths":[131072]}' \
|
224 |
+
--batch_size auto
|
225 |
+
```
|
226 |
+
|
227 |
+
**Multimodal MMMU**
|
228 |
+
```
|
229 |
+
lm_eval \
|
230 |
+
--model vllm-vlm \
|
231 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \
|
232 |
+
--tasks mmmu_val \
|
233 |
+
--apply_chat_template \
|
234 |
+
--batch_size auto
|
235 |
+
```
|
236 |
+
|
237 |
+
**Multimodal ChartQA**
|
238 |
+
```
|
239 |
+
export VLLM_MM_INPUT_CACHE_GIB=8
|
240 |
+
lm_eval \
|
241 |
+
--model vllm-vlm \
|
242 |
+
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \
|
243 |
+
--tasks chartqa \
|
244 |
+
--apply_chat_template \
|
245 |
+
--batch_size auto
|
246 |
+
```
|
247 |
+
|
248 |
+
</details>
|
249 |
+
|
250 |
+
### Accuracy
|
251 |
+
|
252 |
+
| | Recovery (%) | meta-llama/Llama-4-Scout-17B-16E-Instruct | RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic<br>(this model) |
|
253 |
+
| ---------------------------------------------- | :-----------: | :---------------------------------------: | :-----------------------------------------------------------------: |
|
254 |
+
| ARC-Challenge<br>25-shot | 100.36 | 69.37 | 69.62 |
|
255 |
+
| GSM8k<br>5-shot | 99.24 | 90.45 | 89.76 |
|
256 |
+
| HellaSwag<br>10-shot | 99.94 | 85.23 | 85.18 |
|
257 |
+
| MMLU<br>5-shot | 99.94 | 80.54 | 80.49 |
|
258 |
+
| TruthfulQA<br>0-shot | 99.17 | 61.41 | 60.90 |
|
259 |
+
| WinoGrande<br>5-shot | 98.88 | 77.90 | 77.03 |
|
260 |
+
| **OpenLLM v1<br>Average Score** | **99.59** | **77.48** | **77.16** |
|
261 |
+
| IFEval<br>0-shot<br>avg of inst and prompt acc | 100.91 | 86.90 | 87.69 |
|
262 |
+
| Big Bench Hard<br>3-shot | 99.82 | 65.13 | 65.01 |
|
263 |
+
| Math Lvl 5<br>4-shot | 98.82 | 57.78 | 57.10 |
|
264 |
+
| GPQA<br>0-shot | 100.53 | 31.88 | 32.05 |
|
265 |
+
| MuSR<br>0-shot | 102.18 | 42.20 | 43.12 |
|
266 |
+
| MMLU-Pro<br>5-shot | 99.82 | 55.70 | 55.60 |
|
267 |
+
| **OpenLLM v2<br>Average Score** | **100.28** | **56.60** | **56.76** |
|
268 |
+
| RULER<br>seqlen = 131072<br>niah_multikey_1 | 101.36 | 88.20 | 89.40 |
|
269 |
+
| RULER<br>seqlen = 131072<br>niah_multikey_2 | 100.72 | 83.60 | 84.20 |
|
270 |
+
| RULER<br>seqlen = 131072<br>niah_multikey_3 | 96.19 | 78.80 | 75.80 |
|
271 |
+
| RULER<br>seqlen = 131072<br>niah_multiquery | 100.79 | 95.40 | 96.15 |
|
272 |
+
| RULER<br>seqlen = 131072<br>niah_multivalue | 97.22 | 73.75 | 71.70 |
|
273 |
+
| RULER<br>seqlen = 131072<br>niah_single_1 | 100.00 | 100.00 | 100.00 |
|
274 |
+
| RULER<br>seqlen = 131072<br>niah_single_2 | 100.00 | 99.80 | 99.80 |
|
275 |
+
| RULER<br>seqlen = 131072<br>niah_single_3 | 100.00 | 99.80 | 99.80 |
|
276 |
+
| RULER<br>seqlen = 131072<br>ruler_cwe | 96.19 | 39.42 | 37.92 |
|
277 |
+
| RULER<br>seqlen = 131072<br>ruler_fwe | 98.86 | 92.93 | 91.87 |
|
278 |
+
| RULER<br>seqlen = 131072<br>ruler_qa_hotpot | 100.00 | 48.20 | 48.20 |
|
279 |
+
| RULER<br>seqlen = 131072<br>ruler_qa_squad | 98.81 | 53.57 | 52.93 |
|
280 |
+
| RULER<br>seqlen = 131072<br>ruler_qa_vt | 100.35 | 92.28 | 92.60 |
|
281 |
+
| **RULER<br>seqlen = 131072<br>Average Score** | **99.49** | **80.44** | **80.03** |
|
282 |
+
| MMMU<br>0-shot | 97.92 | 53.44 | 52.33 |
|
283 |
+
| ChartQA<br>0-shot<br>exact_match | 100.12 | 65.88 | 65.96 |
|
284 |
+
| ChartQA<br>0-shot<br>relaxed_accuracy | 99.69 | 88.92 | 88.64 |
|
285 |
+
| **Multimodal Average Score** | **99.38** | **69.41** | **68.98** |
|
286 |
|
|
|
|
|
|
|
|