Llama-4-Scout-17B-16E-Instruct-FP8-dynamic

Model Overview

  • Model Architecture: Llama4ForConditionalGeneration
    • Input: Text / Image
    • Output: Text
  • Model Optimizations:
    • Activation quantization: FP8
    • Weight quantization: FP8
  • Release Date: 04/15/2025
  • Version: 1.0
  • Model Developers: Red Hat (Neural Magic)

Model Optimizations

This model was obtained by quantizing activations and weights of Llama-4-Scout-17B-16E-Instruct to FP8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%. The llm-compressor library is used for quantization.

Deployment

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic"
number_gpus = 4

sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

prompt = "Give me a short introduction to large language model."

llm = LLM(model=model_id, tensor_parallel_size=number_gpus)

outputs = llm.generate(prompt, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)

vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.

Creation

Creation details This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
#!/usr/bin/env python3
"""
This script loads an LLM model and applies FP8 quantization to
weights and activations. Activations are dynamically quantized, i.e. during
actual runtime.
"""

import argparse
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, Llama4ForConditionalGeneration
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor import oneshot
from compressed_tensors.quantization import (
    QuantizationScheme,
    QuantizationArgs,
    QuantizationType,
    QuantizationStrategy,
)


def parse_arguments():
    """Parse command line arguments."""
    parser = argparse.ArgumentParser(description="Quantize a causal language model")
    parser.add_argument(
        "--model_path",
        type=str,
        required=True,
        help="Path to the pre-trained model",
    )
    parser.add_argument(
        "--quant_path",
        type=str,
        required=True,
        help="Output path for the quantized model",
    )
    return parser.parse_args()


def main():
    """Main function to load and quantize the model."""
    args = parse_arguments()

    print(f"Loading model from {args.model_path}...")
    model = Llama4ForConditionalGeneration.from_pretrained(
        args.model_path,
        device_map="auto",
        torch_dtype="auto",
        trust_remote_code=True,
    )

    quant_scheme = QuantizationScheme(
        targets=["Linear"],
        weights=QuantizationArgs(
            num_bits=8,
            type=QuantizationType.FLOAT,
            strategy=QuantizationStrategy.CHANNEL,
            symmetric=True,
            observer="mse",
        ),
        input_activations=QuantizationArgs(
            num_bits=8,
            type=QuantizationType.FLOAT,
            strategy=QuantizationStrategy.TOKEN,
            symmetric=True,
            dynamic=True,
        ),
        output_activations=None,
    )

    recipe = QuantizationModifier(
        targets="Linear",
        config_groups={"group_0": quant_scheme},
        ignore=[
            're:.*lm_head',
            're:.*self_attn',
            're:.*router',
            're:.*vision_model',
            're:.*multi_modal_projector',
        ]
    )

    print("Applying quantization...")
    oneshot(
        model=model,
        recipe=recipe,
        trust_remote_code_model=True,
    )

    model.save_pretrained(args.quant_path, save_compressed=True, skip_compression_stats=True, disable_sparse_compression=True)
    print(f"Quantized model saved to {args.quant_path}")


if __name__ == "__main__":
    main()

Evaluation

The model was evaluated on the OpenLLM leaderboard tasks (v1 and v2), long context RULER, multimodal MMMU, and multimodal ChartQA. All evaluations are obtained through lm-evaluation-harness.

Evaluation details

OpenLLM v1

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8,gpu_memory_utilization=0.7,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks openllm \
  --batch_size auto 

OpenLLM v2

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=8,gpu_memory_utilization=0.5,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks leaderboard \
  --apply_chat_template \
  --fewshot_as_multiturn \
  --batch_size auto 

Long Context RULER

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=524288,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks ruler \
  --metadata='{"max_seq_lengths":[131072]}' \
  --batch_size auto 

Multimodal MMMU

lm_eval \
  --model vllm-vlm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \
  --tasks mmmu_val \
  --apply_chat_template \
  --batch_size auto 

Multimodal ChartQA

export VLLM_MM_INPUT_CACHE_GIB=8
lm_eval \
  --model vllm-vlm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \
  --tasks chartqa \
  --apply_chat_template \
  --batch_size auto 

Accuracy

Recovery (%) meta-llama/Llama-4-Scout-17B-16E-Instruct RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic
(this model)
ARC-Challenge
25-shot
100.36 69.37 69.62
GSM8k
5-shot
99.24 90.45 89.76
HellaSwag
10-shot
99.94 85.23 85.18
MMLU
5-shot
99.94 80.54 80.49
TruthfulQA
0-shot
99.17 61.41 60.90
WinoGrande
5-shot
98.88 77.90 77.03
OpenLLM v1
Average Score
99.59 77.48 77.16
IFEval
0-shot
avg of inst and prompt acc
100.91 86.90 87.69
Big Bench Hard
3-shot
99.82 65.13 65.01
Math Lvl 5
4-shot
98.82 57.78 57.10
GPQA
0-shot
100.53 31.88 32.05
MuSR
0-shot
102.18 42.20 43.12
MMLU-Pro
5-shot
99.82 55.70 55.60
OpenLLM v2
Average Score
100.28 56.60 56.76
RULER
seqlen = 131072
niah_multikey_1
101.36 88.20 89.40
RULER
seqlen = 131072
niah_multikey_2
100.72 83.60 84.20
RULER
seqlen = 131072
niah_multikey_3
96.19 78.80 75.80
RULER
seqlen = 131072
niah_multiquery
100.79 95.40 96.15
RULER
seqlen = 131072
niah_multivalue
97.22 73.75 71.70
RULER
seqlen = 131072
niah_single_1
100.00 100.00 100.00
RULER
seqlen = 131072
niah_single_2
100.00 99.80 99.80
RULER
seqlen = 131072
niah_single_3
100.00 99.80 99.80
RULER
seqlen = 131072
ruler_cwe
96.19 39.42 37.92
RULER
seqlen = 131072
ruler_fwe
98.86 92.93 91.87
RULER
seqlen = 131072
ruler_qa_hotpot
100.00 48.20 48.20
RULER
seqlen = 131072
ruler_qa_squad
98.81 53.57 52.93
RULER
seqlen = 131072
ruler_qa_vt
100.35 92.28 92.60
RULER
seqlen = 131072
Average Score
99.49 80.44 80.03
MMMU
0-shot
97.92 53.44 52.33
ChartQA
0-shot
exact_match
100.12 65.88 65.96
ChartQA
0-shot
relaxed_accuracy
99.69 88.92 88.64
Multimodal Average Score 99.38 69.41 68.98
Downloads last month
4,069
Safetensors
Model size
109B params
Tensor type
BF16
·
F8_E4M3
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic

Space using RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic 1