metadata
language:
- en
license: mit
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:1400000
- loss:SpladeLoss
- loss:SparseMarginMSELoss
- loss:FlopsLoss
base_model: prajjwal1/bert-tiny
widget:
- text: >-
Introduction. The Civil Rights Act of 1964, which ended segregation in
public places and banned employment discrimination on the basis of race,
color, religion, sex or national origin, is considered one of the crowning
legislative achievements of the civil rights movement.
- text: >-
Bismuth subsalicylate. Bismuth subsalicylate, sold under the brand name
Pepto-Bismol, is an antacid medication used to treat temporary discomforts
of the stomach and gastrointestinal tract, such as diarrhea, indigestion,
heartburn and nausea. Commonly known as pink bismuth, it is also sometimes
the active ingredient in Kaopectate.
- text: what does vdc mean virtual
- text: >-
It is a unique composite of the effects of temperature, wind, humidity,
sunshine intensity, cloudiness, precipitation and elevation on the human
body--everything that affects how warm or cold a person feels.
- text: >-
When used in a legal context in the U.S., a narcotic drug is simply one
that is totally prohibited, or one that is used in violation of
governmental regulation, such as heroin or cannabis. In the medical
community, the term is more precisely defined and generally does not carry
the same negative connotations.
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
model-index:
- name: SPLADE-BERT-Tiny-Distil
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: dot_accuracy@1
value: 0.4618
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7832
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8856
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.954
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.4618
name: Dot Precision@1
- type: dot_precision@3
value: 0.267
name: Dot Precision@3
- type: dot_precision@5
value: 0.18404
name: Dot Precision@5
- type: dot_precision@10
value: 0.10012
name: Dot Precision@10
- type: dot_recall@1
value: 0.4473166666666666
name: Dot Recall@1
- type: dot_recall@3
value: 0.7684
name: Dot Recall@3
- type: dot_recall@5
value: 0.8766166666666666
name: Dot Recall@5
- type: dot_recall@10
value: 0.9485833333333334
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.7103625975086508
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6364844444444471
name: Dot Mrr@10
- type: dot_map@100
value: 0.6323461165016817
name: Dot Map@100
- type: query_active_dims
value: 18.040599822998047
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.999408931268495
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 90.48735630836055
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.997035339875881
name: Corpus Sparsity Ratio
SPLADE-BERT-Tiny-Distil
This is a SPLADE Sparse Encoder model finetuned from prajjwal1/bert-tiny using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: SPLADE Sparse Encoder
- Base model: prajjwal1/bert-tiny
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Language: en
- License: mit
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertForMaskedLM'})
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("yosefw/SPLADE-BERT-Tiny-distil-v5")
# Run inference
queries = [
"lists of narcotic medications",
]
documents = [
'The following list of narcotics is just a sample of some of the names you may hear either in a medical setting or on the streets: 1 Heroin. 2 Opium. 3 Oxycontin. Oxycodone. 4 Hydrocodone. Hydromorphone. 5 Fentanyl. Buprenorphine. 6 Levorphanol. 7 Codeine. Lorcet. 8 Lortab. 9 Norco. 10 Oncet. Procet. 11 Vicodin. Xodol. Zydone.',
'When used in a legal context in the U.S., a narcotic drug is simply one that is totally prohibited, or one that is used in violation of governmental regulation, such as heroin or cannabis. In the medical community, the term is more precisely defined and generally does not carry the same negative connotations.',
'Tomb is a vault for the dead (an enclosed grave). Raider means someone who attacks the enemy or steals. The term applies to grave robbers. Or treasure hunters. It is also the name of a popular multi platform video game(Tomb Raider). Which features a main character who is a explorer/treasure hunter(Lara Croft).',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[14.6490, 16.3028, 1.8537]])
Evaluation
Metrics
Sparse Information Retrieval
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | Value |
---|---|
dot_accuracy@1 | 0.4618 |
dot_accuracy@3 | 0.7832 |
dot_accuracy@5 | 0.8856 |
dot_accuracy@10 | 0.954 |
dot_precision@1 | 0.4618 |
dot_precision@3 | 0.267 |
dot_precision@5 | 0.184 |
dot_precision@10 | 0.1001 |
dot_recall@1 | 0.4473 |
dot_recall@3 | 0.7684 |
dot_recall@5 | 0.8766 |
dot_recall@10 | 0.9486 |
dot_ndcg@10 | 0.7104 |
dot_mrr@10 | 0.6365 |
dot_map@100 | 0.6323 |
query_active_dims | 18.0406 |
query_sparsity_ratio | 0.9994 |
corpus_active_dims | 90.4874 |
corpus_sparsity_ratio | 0.997 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,400,000 training samples
- Columns:
query
,positive
,negative
, andlabel
- Approximate statistics based on the first 1000 samples:
query positive negative label type string string string list details - min: 4 tokens
- mean: 8.98 tokens
- max: 40 tokens
- min: 20 tokens
- mean: 80.67 tokens
- max: 298 tokens
- min: 17 tokens
- mean: 76.49 tokens
- max: 238 tokens
- size: 1 elements
- Samples:
query positive negative label what was the congressional reconstruction act?
On Mar. 2, 1867, Congress enacted the Reconstruction Act, which, supplemented later by three related acts, divided the South (except Tennessee) into five military districts in which the authority of the army commander was supreme.y Aug., 1868, six states (Arkansas, North Carolina, South Carolina, Louisiana, Alabama, and Florida) had been readmitted to the Union, having ratified the Fourteenth Amendment as required by the first Reconstruction Act.
Reconstruction Acts of 1867-1868. Johnson s vetoes of these measures were overridden by Congress, repeating a familiar pattern. Nearly two years following the end of the Civil War, Congress finally forged a complete plan for reconstruction.Three measures were passed in 1867 as well as additional legislation the following year.early two years following the end of the Civil War, Congress finally forged a complete plan for reconstruction. Three measures were passed in 1867 as well as additional legislation the following year.
[0.25]
what are two similarities of atm and debit cards
Similarities of ATM Card and Debit Card ATM card and debit card are made of plastic and both have the same appearance. Both are issued by the bank and provide the facility like balance inquiry, withdrawal of money or make payment online and much more.
Debit cards offer the convenience of a credit but work in a different way. Debit cards draw money directly from your checking account when you make the purchase. They do this by placing a hold on the amount of the purchase.
[5.547402381896973]
who makes runway enduro tires
Who makes Runway Enduro tires?
Reference.com https://www.reference.com/vehicles/runway-enduro-tires-e6fad1dc190d5183 Runway Enduro tires are manufactured by GITI Tire, one the largest tire manufacturing companies in Asia and the 10th largest in the world. GITI Tire is based in … Runway Tires Global Passenger Car, 4×4/SUV & Light Truck/Van … - Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMarginMSELoss", "document_regularizer_weight": 0.3, "query_regularizer_weight": 0.5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 24per_device_eval_batch_size
: 24gradient_accumulation_steps
: 2learning_rate
: 8e-05num_train_epochs
: 6lr_scheduler_type
: cosinewarmup_ratio
: 0.025fp16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedpush_to_hub
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 24per_device_eval_batch_size
: 24per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 8e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.025warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | dot_ndcg@10 |
---|---|---|---|
1.0 | 29167 | 9918.757 | 0.6805 |
2.0 | 58334 | 13.1599 | 0.6956 |
3.0 | 87501 | 11.9647 | 0.7034 |
4.0 | 116668 | 10.5555 | 0.7076 |
5.0 | 145835 | 9.6642 | 0.7089 |
6.0 | 175002 | 9.2451 | 0.7104 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 5.0.0
- Transformers: 4.53.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 4.0.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
SparseMarginMSELoss
@misc{hofstätter2021improving,
title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
year={2021},
eprint={2010.02666},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
FlopsLoss
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}