File size: 14,734 Bytes
bacd35b
 
 
 
 
 
619acf7
 
 
 
 
 
 
 
 
 
 
bacd35b
619acf7
bacd35b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
619acf7
 
bacd35b
 
 
619acf7
bacd35b
 
 
 
 
 
 
 
619acf7
bacd35b
 
 
619acf7
bacd35b
 
 
 
 
619acf7
bacd35b
 
619acf7
bacd35b
 
 
 
 
619acf7
bacd35b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1562ab4e50>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1562ab4ee0>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1562ab4f70>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1562ab9040>",
        "_build": "<function ActorCriticPolicy._build at 0x7f1562ab90d0>",
        "forward": "<function ActorCriticPolicy.forward at 0x7f1562ab9160>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1562ab91f0>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7f1562ab9280>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1562ab9310>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1562ab93a0>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1562ab9430>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7f1562ab1960>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
        "dtype": "float32",
        "_shape": [
            8
        ],
        "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
        "high": "[inf inf inf inf inf inf inf inf]",
        "bounded_below": "[False False False False False False False False]",
        "bounded_above": "[False False False False False False False False]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
        "n": 4,
        "_shape": [],
        "dtype": "int64",
        "_np_random": null
    },
    "n_envs": 16,
    "num_timesteps": 1015808,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1671333539602072746,
    "learning_rate": 0.0003,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFOyDD4Bg8U+mu8yPdMQZ77k0KE9qIuvPQAAAAAAAAAAVgSqPl9bVj9VtQi9u0HrvtnfYj6WcQu+AAAAAAAAAADtoB8+t/TsPgu3yr0rCFq+5G4KPbDvTTwAAAAAAAAAAM3mEj0UBIi64naLvGYqJTlKm8O6Q3+VuAAAgD8AAIA/Zt4+O2OHED25SB4+bVqSvrLthD5bASm+AAAAAAAAAACamQU5YOm+Puguyj20FI6+oyWlPRBMXrwAAAAAAAAAAACUirvnybM/elPbviHYj75zzKA78rjGPQAAAAAAAAAA5hl+PfbMObqNrRQ6LWZVNTCq6bjtgS65AACAPwAAgD9modU8j/J3ulYfELOgdOuw/FUDOxaJqDMAAIA/AACAP4DsGb2PAi+6KCzlNoNOPDLY0iY7g74HtgAAgD8AAIA/mhnYOgcP4z6dRkg99ZiFvq3+5j3yu+k8AAAAAAAAAAAzScg9e9aluoMk6rw6U1qy5jhGudqS/jMAAAAAAACAP/D6fr6OfnA/6YkRv3cI0r6VCXG+IJSavgAAAAAAAAAAEJePPk5XRD9y9iS8zwjVvuQChj6sbwu+AAAAAAAAAADNFhA8XOazP/6NlD4xXtu9IxMJvNATA70AAAAAAAAAAAD2LDx5wWQ/5uJ2PcYP2b6avRi8k5rdPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAEAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.015808000000000044,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIA+s4figJYkCUhpRSlIwBbJRN6AOMAXSUR0CRBQqSowVTdX2UKGgGaAloD0MIhQX3Ax6GcUCUhpRSlGgVTf4BaBZHQJEQt4lhPTJ1fZQoaAZoCWgPQwh6G5sdKbZnQJSGlFKUaBVN6ANoFkdAkRFHDJlrdnV9lChoBmgJaA9DCAAapUt/E3FAlIaUUpRoFU23A2gWR0CRJ5zeGfwrdX2UKGgGaAloD0MIG55eKUv5cECUhpRSlGgVTTkCaBZHQJEoRyFPBSF1fZQoaAZoCWgPQwgCvAUSFJtvQJSGlFKUaBVNigFoFkdAkSl1vAGjbnV9lChoBmgJaA9DCCGsxhLW13FAlIaUUpRoFU2QA2gWR0CRMG01IiC8dX2UKGgGaAloD0MIvk1/9mOuckCUhpRSlGgVTXoCaBZHQJE0YqjJuEV1fZQoaAZoCWgPQwiyne+nxl5lQJSGlFKUaBVN6ANoFkdAkTaTtPYWcnV9lChoBmgJaA9DCNCdYP91MmZAlIaUUpRoFU3oA2gWR0CRNrEzfrKOdX2UKGgGaAloD0MI7GexFEmncECUhpRSlGgVTcQDaBZHQJE4RIQOFxp1fZQoaAZoCWgPQwj5SiAl9mVjQJSGlFKUaBVN6ANoFkdAkThyTQmeDnV9lChoBmgJaA9DCGhdo+WA9nFAlIaUUpRoFU2dAWgWR0CROc8mrsBydX2UKGgGaAloD0MIzXUaaanQZkCUhpRSlGgVTegDaBZHQJE9QE1VHWl1fZQoaAZoCWgPQwhQNuUKr2VxQJSGlFKUaBVN9QFoFkdAkT1mLgn+h3V9lChoBmgJaA9DCBzqd2HrSmdAlIaUUpRoFU3oA2gWR0CRPXU/OdGzdX2UKGgGaAloD0MIA9GTMinrbECUhpRSlGgVTdoBaBZHQJFAEmlZX+51fZQoaAZoCWgPQwgG8uzyratjQJSGlFKUaBVN6ANoFkdAkUDQYcebNXV9lChoBmgJaA9DCFnfwOTGk3FAlIaUUpRoFU1LAWgWR0CRRby6cy31dX2UKGgGaAloD0MIldbfEoA4bkCUhpRSlGgVTb4DaBZHQJFF4p+c6Nl1fZQoaAZoCWgPQwgvM2yUdfpwQJSGlFKUaBVNgAFoFkdAkUiHw5NoJ3V9lChoBmgJaA9DCNWXpZ3abHFAlIaUUpRoFU3fA2gWR0CRSkzposZpdX2UKGgGaAloD0MIWp4Hd2fAcECUhpRSlGgVTeIBaBZHQJFPytknTiN1fZQoaAZoCWgPQwjVeyqn/VhwQJSGlFKUaBVNXwNoFkdAkVK/8uSOinV9lChoBmgJaA9DCPdZZaY0gG1AlIaUUpRoFU13AWgWR0CRVFX3xnWbdX2UKGgGaAloD0MIilqaW6HFYkCUhpRSlGgVTegDaBZHQJFtbAmAskJ1fZQoaAZoCWgPQwikOEcd3cJwQJSGlFKUaBVNKQJoFkdAkW2Ie1a4c3V9lChoBmgJaA9DCCuJ7INsi3FAlIaUUpRoFU2VAmgWR0CRbwxrzoU0dX2UKGgGaAloD0MIWfrQBXVhcECUhpRSlGgVTT0BaBZHQJFvmMYMvyt1fZQoaAZoCWgPQwgFNXwL67xwQJSGlFKUaBVN1QFoFkdAkXKfb9If83V9lChoBmgJaA9DCFBu2/eoOmxAlIaUUpRoFU2UAmgWR0CRctvnr6cidX2UKGgGaAloD0MIwmnBi76+R0CUhpRSlGgVS6xoFkdAkXXdGI9C/3V9lChoBmgJaA9DCKCNXDcldnFAlIaUUpRoFU2SA2gWR0CRdf+0gKWtdX2UKGgGaAloD0MIVyJQ/YOMYECUhpRSlGgVTegDaBZHQJF2U+0PYnR1fZQoaAZoCWgPQwh1dFyNrPVwQJSGlFKUaBVNUQFoFkdAkXfBBE8aGnV9lChoBmgJaA9DCFiqC3gZVnJAlIaUUpRoFU1XAmgWR0CReLa3qiXZdX2UKGgGaAloD0MIIlLTLqYlNUCUhpRSlGgVS+1oFkdAkXoHuNPxhHV9lChoBmgJaA9DCKOs30zMz3BAlIaUUpRoFU0WAWgWR0CReoe4Cp3pdX2UKGgGaAloD0MIUkSGVfzVcECUhpRSlGgVTVUCaBZHQJF6xiz9jwx1fZQoaAZoCWgPQwiKV1nbFPVhQJSGlFKUaBVN6ANoFkdAkXzPYSQHRnV9lChoBmgJaA9DCGWNeojGXmZAlIaUUpRoFU3oA2gWR0CRgc1rIo3KdX2UKGgGaAloD0MIsYaL3NN5b0CUhpRSlGgVTa4BaBZHQJGDIXMyJsR1fZQoaAZoCWgPQwjLgLOUrAxmQJSGlFKUaBVN6ANoFkdAkYVWeMAFPnV9lChoBmgJaA9DCCl1yThGeW5AlIaUUpRoFU08AWgWR0CRh5pmEoOQdX2UKGgGaAloD0MIbw7Xag9BcECUhpRSlGgVTeUBaBZHQJGJ9pztCzF1fZQoaAZoCWgPQwgykdJsnjRuQJSGlFKUaBVNQgJoFkdAkY8lWn0kGHV9lChoBmgJaA9DCAUx0LVvBnFAlIaUUpRoFU0jAmgWR0CRkW+cYqG2dX2UKGgGaAloD0MITIqPT8jgb0CUhpRSlGgVTQEBaBZHQJGUXYnOSnt1fZQoaAZoCWgPQwg7Vb5nJN5xQJSGlFKUaBVNCAJoFkdAkZYezY287XV9lChoBmgJaA9DCKd1G9R+NGZAlIaUUpRoFU3oA2gWR0CRl1oouwotdX2UKGgGaAloD0MIU+v9Rjs1bUCUhpRSlGgVTTcCaBZHQJGY1SbYsd11fZQoaAZoCWgPQwi8BRIUv/tjQJSGlFKUaBVN6ANoFkdAkZs2knCwbHV9lChoBmgJaA9DCPMeZ5qwr3FAlIaUUpRoFU3XAmgWR0CRm2Q66reZdX2UKGgGaAloD0MIodgKmpa/cUCUhpRSlGgVTZUCaBZHQJGcLkJa7mN1fZQoaAZoCWgPQwgFacaiabpwQJSGlFKUaBVNPwJoFkdAkaAA6ZH/cXV9lChoBmgJaA9DCN1FmKJct2xAlIaUUpRoFU08A2gWR0CRtNjfek57dX2UKGgGaAloD0MI7yB2phBmcECUhpRSlGgVTZUDaBZHQJG287bL2Yh1fZQoaAZoCWgPQwjNPSR878VwQJSGlFKUaBVNigFoFkdAkbfb2pQ1rXV9lChoBmgJaA9DCMe9+Q3T6nFAlIaUUpRoFU2yAWgWR0CRt/QKa5PNdX2UKGgGaAloD0MIRuwTQHFFcUCUhpRSlGgVTT0BaBZHQJG4CTLW7OF1fZQoaAZoCWgPQwgmGw+22E5xQJSGlFKUaBVNFQJoFkdAkbhXWjGkvnV9lChoBmgJaA9DCG/UCtN35W1AlIaUUpRoFU0yA2gWR0CRuWmXw9aEdX2UKGgGaAloD0MIwOrIkY7kcECUhpRSlGgVTUEBaBZHQJG6GIl+mWN1fZQoaAZoCWgPQwjcL5+smJBwQJSGlFKUaBVNbQFoFkdAkbqUHdGiH3V9lChoBmgJaA9DCLPttDUi7m9AlIaUUpRoFU0zAWgWR0CRvDll9SdfdX2UKGgGaAloD0MI86rOakHqcECUhpRSlGgVTVQBaBZHQJG8jUI9kjJ1fZQoaAZoCWgPQwhftwiMdUdvQJSGlFKUaBVNeAFoFkdAkb3qXOW0JHV9lChoBmgJaA9DCOYGQx2WdXFAlIaUUpRoFU0PAWgWR0CRvteEIw/QdX2UKGgGaAloD0MIzox+NJwywz+UhpRSlGgVS+NoFkdAkcAOLJjlP3V9lChoBmgJaA9DCA98DFYcqXFAlIaUUpRoFU1vA2gWR0CRwEk0aZQYdX2UKGgGaAloD0MI++k/a/6wcECUhpRSlGgVTU4CaBZHQJHAoaGYa5x1fZQoaAZoCWgPQwjIluXrcjNwQJSGlFKUaBVNCQFoFkdAkcFsnVoYenV9lChoBmgJaA9DCKyNsRMed3FAlIaUUpRoFU2VAWgWR0CRwyGp++dtdX2UKGgGaAloD0MIoKcBg6QrbkCUhpRSlGgVTZABaBZHQJHGCNNrTH91fZQoaAZoCWgPQwj2X+emjVJxQJSGlFKUaBVNYgFoFkdAkch0haC+UXV9lChoBmgJaA9DCKJinL+J8mNAlIaUUpRoFU3oA2gWR0CRyPE0iyIIdX2UKGgGaAloD0MIKAtfX+t/cECUhpRSlGgVTZ0BaBZHQJHKr2YfGMp1fZQoaAZoCWgPQwjF/x1RoeVwQJSGlFKUaBVNAgFoFkdAkctpb+tKZnV9lChoBmgJaA9DCOJcwwxNNHJAlIaUUpRoFU0kAWgWR0CRy4ZwXIludX2UKGgGaAloD0MIya1Jt+WmcECUhpRSlGgVTQoCaBZHQJHNkbS7Xg91fZQoaAZoCWgPQwjf/IaJBhluQJSGlFKUaBVNLgFoFkdAkc4o/Z/Tb3V9lChoBmgJaA9DCGsqi8Ju23BAlIaUUpRoFU0EAWgWR0CRzyHaews5dX2UKGgGaAloD0MIpWq7CT4ebkCUhpRSlGgVTbkBaBZHQJHQ5dZ7ojh1fZQoaAZoCWgPQwgCnrRwmZVyQJSGlFKUaBVL9WgWR0CR0VEPDpC8dX2UKGgGaAloD0MI12t6UFDBbkCUhpRSlGgVTX8CaBZHQJHR5Oymhuh1fZQoaAZoCWgPQwgR4PQu3mZwQJSGlFKUaBVNAAJoFkdAkdIU4ecQRXV9lChoBmgJaA9DCIWwGktYU29AlIaUUpRoFU0LAmgWR0CR0iENvwVkdX2UKGgGaAloD0MIdsQhG0hMckCUhpRSlGgVTXoCaBZHQJHTAVdonKJ1fZQoaAZoCWgPQwjMYmLzsc1wQJSGlFKUaBVNvwFoFkdAkdM+Sr5qM3V9lChoBmgJaA9DCDPiAtAo/3BAlIaUUpRoFU1YAWgWR0CR1qC3gDRudX2UKGgGaAloD0MIzTrj+6IgckCUhpRSlGgVTQ4CaBZHQJHW/x3FDOV1fZQoaAZoCWgPQwhz8iITMMhwQJSGlFKUaBVNRAFoFkdAkdcuLJjlP3V9lChoBmgJaA9DCM3qHW4HRHNAlIaUUpRoFU1KAWgWR0CR1/65oXbedX2UKGgGaAloD0MIlj50QX0Lc0CUhpRSlGgVTVYBaBZHQJHYWcWj4591fZQoaAZoCWgPQwjDmsqiMCFuQJSGlFKUaBVNLQFoFkdAkdj3bypaR3V9lChoBmgJaA9DCJXUCWgiuXBAlIaUUpRoFU1DAWgWR0CR2T9gWrOrdX2UKGgGaAloD0MIUyCzs2hJcUCUhpRSlGgVTbABaBZHQJHZWYzBRAN1fZQoaAZoCWgPQwgnLscr0DFwQJSGlFKUaBVNDwFoFkdAkdpzTnaFmHV9lChoBmgJaA9DCBiZgF8jA3FAlIaUUpRoFU0bAWgWR0CR25Ub1h9cdX2UKGgGaAloD0MIKULqdrZ8cECUhpRSlGgVTWcBaBZHQJHbqbUgB911ZS4="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 248,
    "n_steps": 1024,
    "gamma": 0.999,
    "gae_lambda": 0.98,
    "ent_coef": 0.01,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "batch_size": 64,
    "n_epochs": 4,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null
}