Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +20 -20
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 249.95 +/- 11.94
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6103cba9d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6103cbaa60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6103cbaaf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6103cbab80>", "_build": "<function ActorCriticPolicy._build at 0x7f6103cbac10>", "forward": "<function ActorCriticPolicy.forward at 0x7f6103cbaca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6103cbad30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6103cbadc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6103cbae50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6103cbaee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6103cbaf70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6103cb58d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671125222015244064, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANoGzr2puB4+F9OhvMUYmb7/LKa9qfsGvAAAAAAAAAAAzbDKvSOcZj8HeAy+zrnsvrX8oL2USgC+AAAAAAAAAAAzx3W9xMngPqrM2ryntIy+mTAwvabSnDwAAAAAAAAAAJpBH7vDxUK6FmRPu5Ybk7bPAXc7AHhvOgAAAAAAAAAAM5W4vQQ9Iz9e5vO9nBnBvhbJrL342Fk7AAAAAAAAAACmQzk+cJqFPikTib4byM2+RuPSPCbrgb0AAAAAAAAAAGZVrDyD5kO89KcnuhfI2Tl2TKU9PS2CuwAAgD8AAIA/yDTBvhJaUz9yuhS+OiMOvzJcv77dd3o9AAAAAAAAAADz0YS9O5WcP4+3C749Cfq+MBL3vIDdUrwAAAAAAAAAAOYV7r1lthE+G1MDPpc4gL4ixxe9uX6APQAAAAAAAAAAmrePvc/oArxi0+o9xzMuvq6W8LpC/MI8AACAPwAAgD/NLVy9xTipPOAd6TxH1oC+1j6ivcZr67sAAAAAAAAAAHNfgr1epq0/JQxJvqv0+r6Sg3q88KWTvAAAAAAAAAAA7Zk3PkiClD/BHUM+Gyy0vqjirD5yK6K9AAAAAAAAAABmfay8vWObP+ZK270y/Oy+g953PJqSpr0AAAAAAAAAAM0hoLxtTQA+CByhvUIImL7s1Na9AzT/vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVXBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwTi4dAwrcUCUhpRSlIwBbJRNBAGMAXSUR0CaXo2Q4jrzdX2UKGgGaAloD0MI+z2xTpWxcUCUhpRSlGgVS/ZoFkdAml7AWnCO3nV9lChoBmgJaA9DCIXP1sHBhm9AlIaUUpRoFU0SAWgWR0CaYBZbpu/DdX2UKGgGaAloD0MIQZscPulncUCUhpRSlGgVS/xoFkdAmmFp1eSjg3V9lChoBmgJaA9DCLH9ZIzPMHBAlIaUUpRoFU05AWgWR0CaYdlIVdondX2UKGgGaAloD0MI53KDoQ4bcUCUhpRSlGgVS9loFkdAmmJrMX7+DXV9lChoBmgJaA9DCJhsPNhiZG5AlIaUUpRoFUvpaBZHQJpi6z5XU6R1fZQoaAZoCWgPQwhMN4lB4KVvQJSGlFKUaBVNFQFoFkdAmmM2OEM9bHV9lChoBmgJaA9DCN6P2y8fZG9AlIaUUpRoFU0XAWgWR0CaY6KLbYbsdX2UKGgGaAloD0MI3CxeLAx8cUCUhpRSlGgVTRABaBZHQJpjshaC+UR1fZQoaAZoCWgPQwgwLlVpCyJhQJSGlFKUaBVN6ANoFkdAmmPbD/EOy3V9lChoBmgJaA9DCPvMWZ/ypXBAlIaUUpRoFU0HAWgWR0CaZLJIUahpdX2UKGgGaAloD0MIuB6F61HXc0CUhpRSlGgVS+1oFkdAmmUjtXxOL3V9lChoBmgJaA9DCAu45/nToXJAlIaUUpRoFUvmaBZHQJpmEdJaq0d1fZQoaAZoCWgPQwhKJNHLKK5xQJSGlFKUaBVL/2gWR0CaZp+bVjI8dX2UKGgGaAloD0MI0hqDTohpY0CUhpRSlGgVTegDaBZHQJpnOT+vQnh1fZQoaAZoCWgPQwiu00hLpWVwQJSGlFKUaBVL3GgWR0CaaQlJYkmhdX2UKGgGaAloD0MITdcTXZc5ckCUhpRSlGgVTScBaBZHQJppSiHqNZN1fZQoaAZoCWgPQwjbiv1l911wQJSGlFKUaBVL/GgWR0CaaYkyDZlGdX2UKGgGaAloD0MIOe0pOSc0TECUhpRSlGgVS8hoFkdAmmmyHM2WIHV9lChoBmgJaA9DCNBGrpsSW3JAlIaUUpRoFU0NAWgWR0CaabBAv+OwdX2UKGgGaAloD0MInGnC9hMrc0CUhpRSlGgVTQQBaBZHQJpqrCGetjl1fZQoaAZoCWgPQwjFyf0OxWJyQJSGlFKUaBVNSgNoFkdAmmwjOX3QD3V9lChoBmgJaA9DCKispuvJLHNAlIaUUpRoFU0pAWgWR0CabCNkOI69dX2UKGgGaAloD0MIc0urIfFacUCUhpRSlGgVTSEBaBZHQJpsRaB7NSt1fZQoaAZoCWgPQwh5Vz1gnkFvQJSGlFKUaBVNBwFoFkdAmmyXUH6dlXV9lChoBmgJaA9DCJZ7gVnhGXFAlIaUUpRoFUvWaBZHQJpspeAuqWF1fZQoaAZoCWgPQwjT9NkBl1ByQJSGlFKUaBVNMwFoFkdAmmzT3Zf2K3V9lChoBmgJaA9DCJWcE3vop21AlIaUUpRoFU0MAWgWR0CabSKUmlZYdX2UKGgGaAloD0MIPXyZKEJecECUhpRSlGgVS+poFkdAmm2Qosqaw3V9lChoBmgJaA9DCOAUViroFnJAlIaUUpRoFU0MAWgWR0Cabutl7MPjdX2UKGgGaAloD0MInYTSF4KmckCUhpRSlGgVTQIBaBZHQJpwgbDMvAZ1fZQoaAZoCWgPQwjlmCzuvytuQJSGlFKUaBVL9WgWR0CacIFN+LFXdX2UKGgGaAloD0MIW7OVl/yacUCUhpRSlGgVTQ4BaBZHQJpwo2hqTKV1fZQoaAZoCWgPQwiGWtO8YwZzQJSGlFKUaBVL/2gWR0CacKZhrnDBdX2UKGgGaAloD0MIP49Rnnl2ckCUhpRSlGgVTSwBaBZHQJpyGuZCv5h1fZQoaAZoCWgPQwg+P4wQHhNyQJSGlFKUaBVL/WgWR0Caczj8k2P1dX2UKGgGaAloD0MIi2zn+ymwcUCUhpRSlGgVTQABaBZHQJp0BUFSsKd1fZQoaAZoCWgPQwjw3lFjQuZtQJSGlFKUaBVNGwFoFkdAmnQhplBhQXV9lChoBmgJaA9DCMMrSZ6rdHBAlIaUUpRoFUv/aBZHQJp0a0TlDF91fZQoaAZoCWgPQwgZyLPL9+1yQJSGlFKUaBVNZwFoFkdAmnUwKOT7mHV9lChoBmgJaA9DCOUrgZTYLXFAlIaUUpRoFU0UAWgWR0CaiTPIn0CjdX2UKGgGaAloD0MI/tMNFHh/b0CUhpRSlGgVTVUBaBZHQJqKBPbfxc51fZQoaAZoCWgPQwhU/rW88nRxQJSGlFKUaBVNDAFoFkdAmozS04R283V9lChoBmgJaA9DCNJtiVzwsXBAlIaUUpRoFU0JAWgWR0CajOfdRBNVdX2UKGgGaAloD0MIpHGo38UMckCUhpRSlGgVTQ8BaBZHQJqM8qiGnGd1fZQoaAZoCWgPQwgYfJqT1xtxQJSGlFKUaBVNEwFoFkdAmo0+UQkHEHV9lChoBmgJaA9DCBhDOdEuWW5AlIaUUpRoFU1VAWgWR0CajW3KSxJNdX2UKGgGaAloD0MIjQqcbAMOckCUhpRSlGgVS/doFkdAmo3zfm9xqHV9lChoBmgJaA9DCG0Dd6CObHJAlIaUUpRoFUv2aBZHQJqPA1zhgmZ1fZQoaAZoCWgPQwhS8BRypX5xQJSGlFKUaBVN8QFoFkdAmo9iYoiLVHV9lChoBmgJaA9DCEKXcOjtk3BAlIaUUpRoFUvxaBZHQJqPtKXfIjp1fZQoaAZoCWgPQwgVxausbV1uQJSGlFKUaBVL7mgWR0Caj99BKL88dX2UKGgGaAloD0MIxLMEGYEuYECUhpRSlGgVTegDaBZHQJqQBfTkQwt1fZQoaAZoCWgPQwiT5Lm+D7lvQJSGlFKUaBVNBwFoFkdAmpBBnBciW3V9lChoBmgJaA9DCJ/leXC3LXBAlIaUUpRoFU0QAWgWR0CakUy3CsOodX2UKGgGaAloD0MIXKrSFlfcbECUhpRSlGgVTQABaBZHQJqR/p/wy7B1fZQoaAZoCWgPQwiqSIWxRexyQJSGlFKUaBVNRgFoFkdAmpNYoNNJv3V9lChoBmgJaA9DCDhorz6e4XBAlIaUUpRoFUvwaBZHQJqT7hrFfiR1fZQoaAZoCWgPQwjGqGvtfc1xQJSGlFKUaBVL+WgWR0CalJMpgCwKdX2UKGgGaAloD0MIQ5CDEmYWc0CUhpRSlGgVTQMBaBZHQJqUoYAKfFt1fZQoaAZoCWgPQwgvo1hu6ZltQJSGlFKUaBVNBwFoFkdAmpSnjdYW+HV9lChoBmgJaA9DCEsFFVV/OnJAlIaUUpRoFUv/aBZHQJqU5f+jua51fZQoaAZoCWgPQwhssdtnlXlHQJSGlFKUaBVLuGgWR0CalWur6tT2dX2UKGgGaAloD0MIhXmPM03PcUCUhpRSlGgVS9toFkdAmpXch9srNHV9lChoBmgJaA9DCJdTAmJSuHBAlIaUUpRoFU0XAWgWR0CalgREnb7CdX2UKGgGaAloD0MINKK0N/hCb0CUhpRSlGgVS/toFkdAmpbqzmfXgHV9lChoBmgJaA9DCG/XS1OE8W5AlIaUUpRoFU0nAWgWR0Cal7yULUkOdX2UKGgGaAloD0MI91s7URIncUCUhpRSlGgVTRQBaBZHQJqXye9SMtN1fZQoaAZoCWgPQwgF+kSeZFdwQJSGlFKUaBVL7GgWR0CamBQYk3S8dX2UKGgGaAloD0MIbtxifq7DcUCUhpRSlGgVTRkBaBZHQJqaIiQkond1fZQoaAZoCWgPQwh1PGagsjRyQJSGlFKUaBVL8GgWR0CamkrE9+w1dX2UKGgGaAloD0MIyT1d3XEzckCUhpRSlGgVS+VoFkdAmptpBLPD53V9lChoBmgJaA9DCCUEq+ql5XFAlIaUUpRoFUvxaBZHQJqbgnogV451fZQoaAZoCWgPQwiXdf9YyCFxQJSGlFKUaBVNAAFoFkdAmpv3TRYzSHV9lChoBmgJaA9DCHgLJCh+RnBAlIaUUpRoFU0EAWgWR0CanAkuYhMbdX2UKGgGaAloD0MIlYJuL+nTb0CUhpRSlGgVTRUBaBZHQJqb//5tWMl1fZQoaAZoCWgPQwhCz2bVZ6hvQJSGlFKUaBVL7GgWR0CanNtapxWDdX2UKGgGaAloD0MIzVoKSPt9ckCUhpRSlGgVTQEBaBZHQJqc2uoxYaJ1fZQoaAZoCWgPQwh4tHHEWmRdQJSGlFKUaBVN6ANoFkdAmp1ImTkhinV9lChoBmgJaA9DCPUu3o/b9HJAlIaUUpRoFUv/aBZHQJqeK2JBPbh1fZQoaAZoCWgPQwhRE30+CqlzQJSGlFKUaBVNJgFoFkdAmp41uR9w33V9lChoBmgJaA9DCAd7E0OyVnFAlIaUUpRoFUv4aBZHQJqeuufVZs91fZQoaAZoCWgPQwh2jCsuDg9wQJSGlFKUaBVNAAFoFkdAmp75uIhyKnV9lChoBmgJaA9DCGfXvRVJWHFAlIaUUpRoFU0KAWgWR0Can3/DLr5ZdX2UKGgGaAloD0MIvOfAcgQxcUCUhpRSlGgVS+xoFkdAmqC9i6QNkXV9lChoBmgJaA9DCBsRjIMLNnFAlIaUUpRoFU0VAWgWR0Caockk8ifQdX2UKGgGaAloD0MIu9bep+qqc0CUhpRSlGgVS/xoFkdAmqJQGfPHDXV9lChoBmgJaA9DCPyO4bEfIW9AlIaUUpRoFUv6aBZHQJqiVxyXD3x1fZQoaAZoCWgPQwhEb/Hwnk5vQJSGlFKUaBVNAAFoFkdAmqMHVoYek3V9lChoBmgJaA9DCE/pYP0fFXFAlIaUUpRoFU0BAWgWR0CaowVuaWondX2UKGgGaAloD0MIgCiYMUUidECUhpRSlGgVTQoBaBZHQJqjO508vEl1fZQoaAZoCWgPQwgEyqZcobxwQJSGlFKUaBVNEQFoFkdAmqRIY77sOXV9lChoBmgJaA9DCKrWwix0zXJAlIaUUpRoFU0AAWgWR0CapEFIuoP1dX2UKGgGaAloD0MI0QX1LXNBc0CUhpRSlGgVTTEBaBZHQJqlKo99tuV1fZQoaAZoCWgPQwgBFvn1AwhyQJSGlFKUaBVNDAFoFkdAmqWkxVQyh3V9lChoBmgJaA9DCJZ4QNkUym9AlIaUUpRoFU0RAWgWR0CapcAzHjp+dX2UKGgGaAloD0MI626e6pBIb0CUhpRSlGgVTQgBaBZHQJqmF6/qPfd1fZQoaAZoCWgPQwha8+MvraxwQJSGlFKUaBVL7GgWR0CapitXgccVdX2UKGgGaAloD0MIWmjnNIv7ckCUhpRSlGgVTQ4BaBZHQJqmfw9aEBd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1562ab4e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1562ab4ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1562ab4f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1562ab9040>", "_build": "<function ActorCriticPolicy._build at 0x7f1562ab90d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1562ab9160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1562ab91f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1562ab9280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1562ab9310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1562ab93a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1562ab9430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1562ab1960>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671333539602072746, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFOyDD4Bg8U+mu8yPdMQZ77k0KE9qIuvPQAAAAAAAAAAVgSqPl9bVj9VtQi9u0HrvtnfYj6WcQu+AAAAAAAAAADtoB8+t/TsPgu3yr0rCFq+5G4KPbDvTTwAAAAAAAAAAM3mEj0UBIi64naLvGYqJTlKm8O6Q3+VuAAAgD8AAIA/Zt4+O2OHED25SB4+bVqSvrLthD5bASm+AAAAAAAAAACamQU5YOm+Puguyj20FI6+oyWlPRBMXrwAAAAAAAAAAACUirvnybM/elPbviHYj75zzKA78rjGPQAAAAAAAAAA5hl+PfbMObqNrRQ6LWZVNTCq6bjtgS65AACAPwAAgD9modU8j/J3ulYfELOgdOuw/FUDOxaJqDMAAIA/AACAP4DsGb2PAi+6KCzlNoNOPDLY0iY7g74HtgAAgD8AAIA/mhnYOgcP4z6dRkg99ZiFvq3+5j3yu+k8AAAAAAAAAAAzScg9e9aluoMk6rw6U1qy5jhGudqS/jMAAAAAAACAP/D6fr6OfnA/6YkRv3cI0r6VCXG+IJSavgAAAAAAAAAAEJePPk5XRD9y9iS8zwjVvuQChj6sbwu+AAAAAAAAAADNFhA8XOazP/6NlD4xXtu9IxMJvNATA70AAAAAAAAAAAD2LDx5wWQ/5uJ2PcYP2b6avRi8k5rdPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAEAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIA+s4figJYkCUhpRSlIwBbJRN6AOMAXSUR0CRBQqSowVTdX2UKGgGaAloD0MIhQX3Ax6GcUCUhpRSlGgVTf4BaBZHQJEQt4lhPTJ1fZQoaAZoCWgPQwh6G5sdKbZnQJSGlFKUaBVN6ANoFkdAkRFHDJlrdnV9lChoBmgJaA9DCAAapUt/E3FAlIaUUpRoFU23A2gWR0CRJ5zeGfwrdX2UKGgGaAloD0MIG55eKUv5cECUhpRSlGgVTTkCaBZHQJEoRyFPBSF1fZQoaAZoCWgPQwgCvAUSFJtvQJSGlFKUaBVNigFoFkdAkSl1vAGjbnV9lChoBmgJaA9DCCGsxhLW13FAlIaUUpRoFU2QA2gWR0CRMG01IiC8dX2UKGgGaAloD0MIvk1/9mOuckCUhpRSlGgVTXoCaBZHQJE0YqjJuEV1fZQoaAZoCWgPQwiyne+nxl5lQJSGlFKUaBVN6ANoFkdAkTaTtPYWcnV9lChoBmgJaA9DCNCdYP91MmZAlIaUUpRoFU3oA2gWR0CRNrEzfrKOdX2UKGgGaAloD0MI7GexFEmncECUhpRSlGgVTcQDaBZHQJE4RIQOFxp1fZQoaAZoCWgPQwj5SiAl9mVjQJSGlFKUaBVN6ANoFkdAkThyTQmeDnV9lChoBmgJaA9DCGhdo+WA9nFAlIaUUpRoFU2dAWgWR0CROc8mrsBydX2UKGgGaAloD0MIzXUaaanQZkCUhpRSlGgVTegDaBZHQJE9QE1VHWl1fZQoaAZoCWgPQwhQNuUKr2VxQJSGlFKUaBVN9QFoFkdAkT1mLgn+h3V9lChoBmgJaA9DCBzqd2HrSmdAlIaUUpRoFU3oA2gWR0CRPXU/OdGzdX2UKGgGaAloD0MIA9GTMinrbECUhpRSlGgVTdoBaBZHQJFAEmlZX+51fZQoaAZoCWgPQwgG8uzyratjQJSGlFKUaBVN6ANoFkdAkUDQYcebNXV9lChoBmgJaA9DCFnfwOTGk3FAlIaUUpRoFU1LAWgWR0CRRby6cy31dX2UKGgGaAloD0MIldbfEoA4bkCUhpRSlGgVTb4DaBZHQJFF4p+c6Nl1fZQoaAZoCWgPQwgvM2yUdfpwQJSGlFKUaBVNgAFoFkdAkUiHw5NoJ3V9lChoBmgJaA9DCNWXpZ3abHFAlIaUUpRoFU3fA2gWR0CRSkzposZpdX2UKGgGaAloD0MIWp4Hd2fAcECUhpRSlGgVTeIBaBZHQJFPytknTiN1fZQoaAZoCWgPQwjVeyqn/VhwQJSGlFKUaBVNXwNoFkdAkVK/8uSOinV9lChoBmgJaA9DCPdZZaY0gG1AlIaUUpRoFU13AWgWR0CRVFX3xnWbdX2UKGgGaAloD0MIilqaW6HFYkCUhpRSlGgVTegDaBZHQJFtbAmAskJ1fZQoaAZoCWgPQwikOEcd3cJwQJSGlFKUaBVNKQJoFkdAkW2Ie1a4c3V9lChoBmgJaA9DCCuJ7INsi3FAlIaUUpRoFU2VAmgWR0CRbwxrzoU0dX2UKGgGaAloD0MIWfrQBXVhcECUhpRSlGgVTT0BaBZHQJFvmMYMvyt1fZQoaAZoCWgPQwgFNXwL67xwQJSGlFKUaBVN1QFoFkdAkXKfb9If83V9lChoBmgJaA9DCFBu2/eoOmxAlIaUUpRoFU2UAmgWR0CRctvnr6cidX2UKGgGaAloD0MIwmnBi76+R0CUhpRSlGgVS6xoFkdAkXXdGI9C/3V9lChoBmgJaA9DCKCNXDcldnFAlIaUUpRoFU2SA2gWR0CRdf+0gKWtdX2UKGgGaAloD0MIVyJQ/YOMYECUhpRSlGgVTegDaBZHQJF2U+0PYnR1fZQoaAZoCWgPQwh1dFyNrPVwQJSGlFKUaBVNUQFoFkdAkXfBBE8aGnV9lChoBmgJaA9DCFiqC3gZVnJAlIaUUpRoFU1XAmgWR0CReLa3qiXZdX2UKGgGaAloD0MIIlLTLqYlNUCUhpRSlGgVS+1oFkdAkXoHuNPxhHV9lChoBmgJaA9DCKOs30zMz3BAlIaUUpRoFU0WAWgWR0CReoe4Cp3pdX2UKGgGaAloD0MIUkSGVfzVcECUhpRSlGgVTVUCaBZHQJF6xiz9jwx1fZQoaAZoCWgPQwiKV1nbFPVhQJSGlFKUaBVN6ANoFkdAkXzPYSQHRnV9lChoBmgJaA9DCGWNeojGXmZAlIaUUpRoFU3oA2gWR0CRgc1rIo3KdX2UKGgGaAloD0MIsYaL3NN5b0CUhpRSlGgVTa4BaBZHQJGDIXMyJsR1fZQoaAZoCWgPQwjLgLOUrAxmQJSGlFKUaBVN6ANoFkdAkYVWeMAFPnV9lChoBmgJaA9DCCl1yThGeW5AlIaUUpRoFU08AWgWR0CRh5pmEoOQdX2UKGgGaAloD0MIbw7Xag9BcECUhpRSlGgVTeUBaBZHQJGJ9pztCzF1fZQoaAZoCWgPQwgykdJsnjRuQJSGlFKUaBVNQgJoFkdAkY8lWn0kGHV9lChoBmgJaA9DCAUx0LVvBnFAlIaUUpRoFU0jAmgWR0CRkW+cYqG2dX2UKGgGaAloD0MITIqPT8jgb0CUhpRSlGgVTQEBaBZHQJGUXYnOSnt1fZQoaAZoCWgPQwg7Vb5nJN5xQJSGlFKUaBVNCAJoFkdAkZYezY287XV9lChoBmgJaA9DCKd1G9R+NGZAlIaUUpRoFU3oA2gWR0CRl1oouwotdX2UKGgGaAloD0MIU+v9Rjs1bUCUhpRSlGgVTTcCaBZHQJGY1SbYsd11fZQoaAZoCWgPQwi8BRIUv/tjQJSGlFKUaBVN6ANoFkdAkZs2knCwbHV9lChoBmgJaA9DCPMeZ5qwr3FAlIaUUpRoFU3XAmgWR0CRm2Q66reZdX2UKGgGaAloD0MIodgKmpa/cUCUhpRSlGgVTZUCaBZHQJGcLkJa7mN1fZQoaAZoCWgPQwgFacaiabpwQJSGlFKUaBVNPwJoFkdAkaAA6ZH/cXV9lChoBmgJaA9DCN1FmKJct2xAlIaUUpRoFU08A2gWR0CRtNjfek57dX2UKGgGaAloD0MI7yB2phBmcECUhpRSlGgVTZUDaBZHQJG287bL2Yh1fZQoaAZoCWgPQwjNPSR878VwQJSGlFKUaBVNigFoFkdAkbfb2pQ1rXV9lChoBmgJaA9DCMe9+Q3T6nFAlIaUUpRoFU2yAWgWR0CRt/QKa5PNdX2UKGgGaAloD0MIRuwTQHFFcUCUhpRSlGgVTT0BaBZHQJG4CTLW7OF1fZQoaAZoCWgPQwgmGw+22E5xQJSGlFKUaBVNFQJoFkdAkbhXWjGkvnV9lChoBmgJaA9DCG/UCtN35W1AlIaUUpRoFU0yA2gWR0CRuWmXw9aEdX2UKGgGaAloD0MIwOrIkY7kcECUhpRSlGgVTUEBaBZHQJG6GIl+mWN1fZQoaAZoCWgPQwjcL5+smJBwQJSGlFKUaBVNbQFoFkdAkbqUHdGiH3V9lChoBmgJaA9DCLPttDUi7m9AlIaUUpRoFU0zAWgWR0CRvDll9SdfdX2UKGgGaAloD0MI86rOakHqcECUhpRSlGgVTVQBaBZHQJG8jUI9kjJ1fZQoaAZoCWgPQwhftwiMdUdvQJSGlFKUaBVNeAFoFkdAkb3qXOW0JHV9lChoBmgJaA9DCOYGQx2WdXFAlIaUUpRoFU0PAWgWR0CRvteEIw/QdX2UKGgGaAloD0MIzox+NJwywz+UhpRSlGgVS+NoFkdAkcAOLJjlP3V9lChoBmgJaA9DCA98DFYcqXFAlIaUUpRoFU1vA2gWR0CRwEk0aZQYdX2UKGgGaAloD0MI++k/a/6wcECUhpRSlGgVTU4CaBZHQJHAoaGYa5x1fZQoaAZoCWgPQwjIluXrcjNwQJSGlFKUaBVNCQFoFkdAkcFsnVoYenV9lChoBmgJaA9DCKyNsRMed3FAlIaUUpRoFU2VAWgWR0CRwyGp++dtdX2UKGgGaAloD0MIoKcBg6QrbkCUhpRSlGgVTZABaBZHQJHGCNNrTH91fZQoaAZoCWgPQwj2X+emjVJxQJSGlFKUaBVNYgFoFkdAkch0haC+UXV9lChoBmgJaA9DCKJinL+J8mNAlIaUUpRoFU3oA2gWR0CRyPE0iyIIdX2UKGgGaAloD0MIKAtfX+t/cECUhpRSlGgVTZ0BaBZHQJHKr2YfGMp1fZQoaAZoCWgPQwjF/x1RoeVwQJSGlFKUaBVNAgFoFkdAkctpb+tKZnV9lChoBmgJaA9DCOJcwwxNNHJAlIaUUpRoFU0kAWgWR0CRy4ZwXIludX2UKGgGaAloD0MIya1Jt+WmcECUhpRSlGgVTQoCaBZHQJHNkbS7Xg91fZQoaAZoCWgPQwjf/IaJBhluQJSGlFKUaBVNLgFoFkdAkc4o/Z/Tb3V9lChoBmgJaA9DCGsqi8Ju23BAlIaUUpRoFU0EAWgWR0CRzyHaews5dX2UKGgGaAloD0MIpWq7CT4ebkCUhpRSlGgVTbkBaBZHQJHQ5dZ7ojh1fZQoaAZoCWgPQwgCnrRwmZVyQJSGlFKUaBVL9WgWR0CR0VEPDpC8dX2UKGgGaAloD0MI12t6UFDBbkCUhpRSlGgVTX8CaBZHQJHR5Oymhuh1fZQoaAZoCWgPQwgR4PQu3mZwQJSGlFKUaBVNAAJoFkdAkdIU4ecQRXV9lChoBmgJaA9DCIWwGktYU29AlIaUUpRoFU0LAmgWR0CR0iENvwVkdX2UKGgGaAloD0MIdsQhG0hMckCUhpRSlGgVTXoCaBZHQJHTAVdonKJ1fZQoaAZoCWgPQwjMYmLzsc1wQJSGlFKUaBVNvwFoFkdAkdM+Sr5qM3V9lChoBmgJaA9DCDPiAtAo/3BAlIaUUpRoFU1YAWgWR0CR1qC3gDRudX2UKGgGaAloD0MIzTrj+6IgckCUhpRSlGgVTQ4CaBZHQJHW/x3FDOV1fZQoaAZoCWgPQwhz8iITMMhwQJSGlFKUaBVNRAFoFkdAkdcuLJjlP3V9lChoBmgJaA9DCM3qHW4HRHNAlIaUUpRoFU1KAWgWR0CR1/65oXbedX2UKGgGaAloD0MIlj50QX0Lc0CUhpRSlGgVTVYBaBZHQJHYWcWj4591fZQoaAZoCWgPQwjDmsqiMCFuQJSGlFKUaBVNLQFoFkdAkdj3bypaR3V9lChoBmgJaA9DCJXUCWgiuXBAlIaUUpRoFU1DAWgWR0CR2T9gWrOrdX2UKGgGaAloD0MIUyCzs2hJcUCUhpRSlGgVTbABaBZHQJHZWYzBRAN1fZQoaAZoCWgPQwgnLscr0DFwQJSGlFKUaBVNDwFoFkdAkdpzTnaFmHV9lChoBmgJaA9DCBiZgF8jA3FAlIaUUpRoFU0bAWgWR0CR25Ub1h9cdX2UKGgGaAloD0MIKULqdrZ8cECUhpRSlGgVTWcBaBZHQJHbqbUgB911ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d8e45c043edb77d206e922f48910ff81f181e40853c18dbf77e29e8c88bc23b
|
3 |
+
size 147214
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,26 +56,26 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1562ab4e50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1562ab4ee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1562ab4f70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1562ab9040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1562ab90d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1562ab9160>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1562ab91f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1562ab9280>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1562ab9310>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1562ab93a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1562ab9430>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f1562ab1960>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1671333539602072746,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFOyDD4Bg8U+mu8yPdMQZ77k0KE9qIuvPQAAAAAAAAAAVgSqPl9bVj9VtQi9u0HrvtnfYj6WcQu+AAAAAAAAAADtoB8+t/TsPgu3yr0rCFq+5G4KPbDvTTwAAAAAAAAAAM3mEj0UBIi64naLvGYqJTlKm8O6Q3+VuAAAgD8AAIA/Zt4+O2OHED25SB4+bVqSvrLthD5bASm+AAAAAAAAAACamQU5YOm+Puguyj20FI6+oyWlPRBMXrwAAAAAAAAAAACUirvnybM/elPbviHYj75zzKA78rjGPQAAAAAAAAAA5hl+PfbMObqNrRQ6LWZVNTCq6bjtgS65AACAPwAAgD9modU8j/J3ulYfELOgdOuw/FUDOxaJqDMAAIA/AACAP4DsGb2PAi+6KCzlNoNOPDLY0iY7g74HtgAAgD8AAIA/mhnYOgcP4z6dRkg99ZiFvq3+5j3yu+k8AAAAAAAAAAAzScg9e9aluoMk6rw6U1qy5jhGudqS/jMAAAAAAACAP/D6fr6OfnA/6YkRv3cI0r6VCXG+IJSavgAAAAAAAAAAEJePPk5XRD9y9iS8zwjVvuQChj6sbwu+AAAAAAAAAADNFhA8XOazP/6NlD4xXtu9IxMJvNATA70AAAAAAAAAAAD2LDx5wWQ/5uJ2PcYP2b6avRi8k5rdPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAEAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIA+s4figJYkCUhpRSlIwBbJRN6AOMAXSUR0CRBQqSowVTdX2UKGgGaAloD0MIhQX3Ax6GcUCUhpRSlGgVTf4BaBZHQJEQt4lhPTJ1fZQoaAZoCWgPQwh6G5sdKbZnQJSGlFKUaBVN6ANoFkdAkRFHDJlrdnV9lChoBmgJaA9DCAAapUt/E3FAlIaUUpRoFU23A2gWR0CRJ5zeGfwrdX2UKGgGaAloD0MIG55eKUv5cECUhpRSlGgVTTkCaBZHQJEoRyFPBSF1fZQoaAZoCWgPQwgCvAUSFJtvQJSGlFKUaBVNigFoFkdAkSl1vAGjbnV9lChoBmgJaA9DCCGsxhLW13FAlIaUUpRoFU2QA2gWR0CRMG01IiC8dX2UKGgGaAloD0MIvk1/9mOuckCUhpRSlGgVTXoCaBZHQJE0YqjJuEV1fZQoaAZoCWgPQwiyne+nxl5lQJSGlFKUaBVN6ANoFkdAkTaTtPYWcnV9lChoBmgJaA9DCNCdYP91MmZAlIaUUpRoFU3oA2gWR0CRNrEzfrKOdX2UKGgGaAloD0MI7GexFEmncECUhpRSlGgVTcQDaBZHQJE4RIQOFxp1fZQoaAZoCWgPQwj5SiAl9mVjQJSGlFKUaBVN6ANoFkdAkThyTQmeDnV9lChoBmgJaA9DCGhdo+WA9nFAlIaUUpRoFU2dAWgWR0CROc8mrsBydX2UKGgGaAloD0MIzXUaaanQZkCUhpRSlGgVTegDaBZHQJE9QE1VHWl1fZQoaAZoCWgPQwhQNuUKr2VxQJSGlFKUaBVN9QFoFkdAkT1mLgn+h3V9lChoBmgJaA9DCBzqd2HrSmdAlIaUUpRoFU3oA2gWR0CRPXU/OdGzdX2UKGgGaAloD0MIA9GTMinrbECUhpRSlGgVTdoBaBZHQJFAEmlZX+51fZQoaAZoCWgPQwgG8uzyratjQJSGlFKUaBVN6ANoFkdAkUDQYcebNXV9lChoBmgJaA9DCFnfwOTGk3FAlIaUUpRoFU1LAWgWR0CRRby6cy31dX2UKGgGaAloD0MIldbfEoA4bkCUhpRSlGgVTb4DaBZHQJFF4p+c6Nl1fZQoaAZoCWgPQwgvM2yUdfpwQJSGlFKUaBVNgAFoFkdAkUiHw5NoJ3V9lChoBmgJaA9DCNWXpZ3abHFAlIaUUpRoFU3fA2gWR0CRSkzposZpdX2UKGgGaAloD0MIWp4Hd2fAcECUhpRSlGgVTeIBaBZHQJFPytknTiN1fZQoaAZoCWgPQwjVeyqn/VhwQJSGlFKUaBVNXwNoFkdAkVK/8uSOinV9lChoBmgJaA9DCPdZZaY0gG1AlIaUUpRoFU13AWgWR0CRVFX3xnWbdX2UKGgGaAloD0MIilqaW6HFYkCUhpRSlGgVTegDaBZHQJFtbAmAskJ1fZQoaAZoCWgPQwikOEcd3cJwQJSGlFKUaBVNKQJoFkdAkW2Ie1a4c3V9lChoBmgJaA9DCCuJ7INsi3FAlIaUUpRoFU2VAmgWR0CRbwxrzoU0dX2UKGgGaAloD0MIWfrQBXVhcECUhpRSlGgVTT0BaBZHQJFvmMYMvyt1fZQoaAZoCWgPQwgFNXwL67xwQJSGlFKUaBVN1QFoFkdAkXKfb9If83V9lChoBmgJaA9DCFBu2/eoOmxAlIaUUpRoFU2UAmgWR0CRctvnr6cidX2UKGgGaAloD0MIwmnBi76+R0CUhpRSlGgVS6xoFkdAkXXdGI9C/3V9lChoBmgJaA9DCKCNXDcldnFAlIaUUpRoFU2SA2gWR0CRdf+0gKWtdX2UKGgGaAloD0MIVyJQ/YOMYECUhpRSlGgVTegDaBZHQJF2U+0PYnR1fZQoaAZoCWgPQwh1dFyNrPVwQJSGlFKUaBVNUQFoFkdAkXfBBE8aGnV9lChoBmgJaA9DCFiqC3gZVnJAlIaUUpRoFU1XAmgWR0CReLa3qiXZdX2UKGgGaAloD0MIIlLTLqYlNUCUhpRSlGgVS+1oFkdAkXoHuNPxhHV9lChoBmgJaA9DCKOs30zMz3BAlIaUUpRoFU0WAWgWR0CReoe4Cp3pdX2UKGgGaAloD0MIUkSGVfzVcECUhpRSlGgVTVUCaBZHQJF6xiz9jwx1fZQoaAZoCWgPQwiKV1nbFPVhQJSGlFKUaBVN6ANoFkdAkXzPYSQHRnV9lChoBmgJaA9DCGWNeojGXmZAlIaUUpRoFU3oA2gWR0CRgc1rIo3KdX2UKGgGaAloD0MIsYaL3NN5b0CUhpRSlGgVTa4BaBZHQJGDIXMyJsR1fZQoaAZoCWgPQwjLgLOUrAxmQJSGlFKUaBVN6ANoFkdAkYVWeMAFPnV9lChoBmgJaA9DCCl1yThGeW5AlIaUUpRoFU08AWgWR0CRh5pmEoOQdX2UKGgGaAloD0MIbw7Xag9BcECUhpRSlGgVTeUBaBZHQJGJ9pztCzF1fZQoaAZoCWgPQwgykdJsnjRuQJSGlFKUaBVNQgJoFkdAkY8lWn0kGHV9lChoBmgJaA9DCAUx0LVvBnFAlIaUUpRoFU0jAmgWR0CRkW+cYqG2dX2UKGgGaAloD0MITIqPT8jgb0CUhpRSlGgVTQEBaBZHQJGUXYnOSnt1fZQoaAZoCWgPQwg7Vb5nJN5xQJSGlFKUaBVNCAJoFkdAkZYezY287XV9lChoBmgJaA9DCKd1G9R+NGZAlIaUUpRoFU3oA2gWR0CRl1oouwotdX2UKGgGaAloD0MIU+v9Rjs1bUCUhpRSlGgVTTcCaBZHQJGY1SbYsd11fZQoaAZoCWgPQwi8BRIUv/tjQJSGlFKUaBVN6ANoFkdAkZs2knCwbHV9lChoBmgJaA9DCPMeZ5qwr3FAlIaUUpRoFU3XAmgWR0CRm2Q66reZdX2UKGgGaAloD0MIodgKmpa/cUCUhpRSlGgVTZUCaBZHQJGcLkJa7mN1fZQoaAZoCWgPQwgFacaiabpwQJSGlFKUaBVNPwJoFkdAkaAA6ZH/cXV9lChoBmgJaA9DCN1FmKJct2xAlIaUUpRoFU08A2gWR0CRtNjfek57dX2UKGgGaAloD0MI7yB2phBmcECUhpRSlGgVTZUDaBZHQJG287bL2Yh1fZQoaAZoCWgPQwjNPSR878VwQJSGlFKUaBVNigFoFkdAkbfb2pQ1rXV9lChoBmgJaA9DCMe9+Q3T6nFAlIaUUpRoFU2yAWgWR0CRt/QKa5PNdX2UKGgGaAloD0MIRuwTQHFFcUCUhpRSlGgVTT0BaBZHQJG4CTLW7OF1fZQoaAZoCWgPQwgmGw+22E5xQJSGlFKUaBVNFQJoFkdAkbhXWjGkvnV9lChoBmgJaA9DCG/UCtN35W1AlIaUUpRoFU0yA2gWR0CRuWmXw9aEdX2UKGgGaAloD0MIwOrIkY7kcECUhpRSlGgVTUEBaBZHQJG6GIl+mWN1fZQoaAZoCWgPQwjcL5+smJBwQJSGlFKUaBVNbQFoFkdAkbqUHdGiH3V9lChoBmgJaA9DCLPttDUi7m9AlIaUUpRoFU0zAWgWR0CRvDll9SdfdX2UKGgGaAloD0MI86rOakHqcECUhpRSlGgVTVQBaBZHQJG8jUI9kjJ1fZQoaAZoCWgPQwhftwiMdUdvQJSGlFKUaBVNeAFoFkdAkb3qXOW0JHV9lChoBmgJaA9DCOYGQx2WdXFAlIaUUpRoFU0PAWgWR0CRvteEIw/QdX2UKGgGaAloD0MIzox+NJwywz+UhpRSlGgVS+NoFkdAkcAOLJjlP3V9lChoBmgJaA9DCA98DFYcqXFAlIaUUpRoFU1vA2gWR0CRwEk0aZQYdX2UKGgGaAloD0MI++k/a/6wcECUhpRSlGgVTU4CaBZHQJHAoaGYa5x1fZQoaAZoCWgPQwjIluXrcjNwQJSGlFKUaBVNCQFoFkdAkcFsnVoYenV9lChoBmgJaA9DCKyNsRMed3FAlIaUUpRoFU2VAWgWR0CRwyGp++dtdX2UKGgGaAloD0MIoKcBg6QrbkCUhpRSlGgVTZABaBZHQJHGCNNrTH91fZQoaAZoCWgPQwj2X+emjVJxQJSGlFKUaBVNYgFoFkdAkch0haC+UXV9lChoBmgJaA9DCKJinL+J8mNAlIaUUpRoFU3oA2gWR0CRyPE0iyIIdX2UKGgGaAloD0MIKAtfX+t/cECUhpRSlGgVTZ0BaBZHQJHKr2YfGMp1fZQoaAZoCWgPQwjF/x1RoeVwQJSGlFKUaBVNAgFoFkdAkctpb+tKZnV9lChoBmgJaA9DCOJcwwxNNHJAlIaUUpRoFU0kAWgWR0CRy4ZwXIludX2UKGgGaAloD0MIya1Jt+WmcECUhpRSlGgVTQoCaBZHQJHNkbS7Xg91fZQoaAZoCWgPQwjf/IaJBhluQJSGlFKUaBVNLgFoFkdAkc4o/Z/Tb3V9lChoBmgJaA9DCGsqi8Ju23BAlIaUUpRoFU0EAWgWR0CRzyHaews5dX2UKGgGaAloD0MIpWq7CT4ebkCUhpRSlGgVTbkBaBZHQJHQ5dZ7ojh1fZQoaAZoCWgPQwgCnrRwmZVyQJSGlFKUaBVL9WgWR0CR0VEPDpC8dX2UKGgGaAloD0MI12t6UFDBbkCUhpRSlGgVTX8CaBZHQJHR5Oymhuh1fZQoaAZoCWgPQwgR4PQu3mZwQJSGlFKUaBVNAAJoFkdAkdIU4ecQRXV9lChoBmgJaA9DCIWwGktYU29AlIaUUpRoFU0LAmgWR0CR0iENvwVkdX2UKGgGaAloD0MIdsQhG0hMckCUhpRSlGgVTXoCaBZHQJHTAVdonKJ1fZQoaAZoCWgPQwjMYmLzsc1wQJSGlFKUaBVNvwFoFkdAkdM+Sr5qM3V9lChoBmgJaA9DCDPiAtAo/3BAlIaUUpRoFU1YAWgWR0CR1qC3gDRudX2UKGgGaAloD0MIzTrj+6IgckCUhpRSlGgVTQ4CaBZHQJHW/x3FDOV1fZQoaAZoCWgPQwhz8iITMMhwQJSGlFKUaBVNRAFoFkdAkdcuLJjlP3V9lChoBmgJaA9DCM3qHW4HRHNAlIaUUpRoFU1KAWgWR0CR1/65oXbedX2UKGgGaAloD0MIlj50QX0Lc0CUhpRSlGgVTVYBaBZHQJHYWcWj4591fZQoaAZoCWgPQwjDmsqiMCFuQJSGlFKUaBVNLQFoFkdAkdj3bypaR3V9lChoBmgJaA9DCJXUCWgiuXBAlIaUUpRoFU1DAWgWR0CR2T9gWrOrdX2UKGgGaAloD0MIUyCzs2hJcUCUhpRSlGgVTbABaBZHQJHZWYzBRAN1fZQoaAZoCWgPQwgnLscr0DFwQJSGlFKUaBVNDwFoFkdAkdpzTnaFmHV9lChoBmgJaA9DCBiZgF8jA3FAlIaUUpRoFU0bAWgWR0CR25Ub1h9cdX2UKGgGaAloD0MIKULqdrZ8cECUhpRSlGgVTWcBaBZHQJHbqbUgB911ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 248,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86b4ac05543fceedbee0171364a5ba3eadb19c6fb0a54cbb3ff77d136aa4d307
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5c7526156da0db783b09008b7b805358cfe4696dac558964373f9c2a721efa4
|
3 |
size 43201
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 249.94982829669752, "std_reward": 11.937462499342109, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-18T03:43:02.912404"}
|