whitneyten's picture
End of training
9f00951 verified
metadata
library_name: transformers
language:
  - id
license: mit
base_model: pyannote/speaker-diarization-3.1
tags:
  - speaker-diarization
  - speaker-segmentation
  - generated_from_trainer
datasets:
  - speaker-segmentation
model-index:
  - name: speaker-segmentation-fine-tuned-datasetID-hugging_2_4_updated_02
    results: []

speaker-segmentation-fine-tuned-datasetID-hugging_2_4_updated_02

This model is a fine-tuned version of pyannote/speaker-diarization-3.1 on the speaker-segmentation dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4274
  • Model Preparation Time: 0.0065
  • Der: 0.1421
  • False Alarm: 0.0214
  • Missed Detection: 0.0105
  • Confusion: 0.1102

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 100
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.15
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Der False Alarm Missed Detection Confusion
0.5722 1.0 285 0.5763 0.0065 0.1903 0.0275 0.0158 0.1470
0.5001 2.0 570 0.5077 0.0065 0.1685 0.0240 0.0125 0.1319
0.4846 3.0 855 0.4810 0.0065 0.1604 0.0221 0.0121 0.1261
0.4441 4.0 1140 0.4686 0.0065 0.1577 0.0220 0.0111 0.1245
0.447 5.0 1425 0.4477 0.0065 0.1494 0.0216 0.0110 0.1168
0.4265 6.0 1710 0.4408 0.0065 0.1458 0.0217 0.0106 0.1135
0.428 7.0 1995 0.4311 0.0065 0.1433 0.0215 0.0105 0.1114
0.4047 8.0 2280 0.4291 0.0065 0.1429 0.0214 0.0105 0.1109
0.4069 9.0 2565 0.4280 0.0065 0.1422 0.0214 0.0105 0.1103
0.4133 10.0 2850 0.4274 0.0065 0.1421 0.0214 0.0105 0.1102

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1