SentenceTransformer based on tmnam20/ViPubMedT5
This is a sentence-transformers model finetuned from tmnam20/ViPubMedT5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: tmnam20/ViPubMedT5
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: T5EncoderModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("vimednli/vipubmedt5-w_multi-SynPD")
# Run inference
sentences = [
'Việc cấy_ghép các EC và MC có nguồn_gốc từ các tế_bào ES chưa phân_biệt của con_người có khả_năng góp_phần tái_tạo mạch_máu điều_trị và do_đó làm giảm diện_tích nhồi máu sau đột_quỵ .',
'Việc cấy_ghép các tế_bào mạch_máu có nguồn_gốc từ tế_bào gốc phôi người góp_phần tái_tạo mạch_máu sau đột_quỵ ở chuột .',
'Những bệnh_nhân ET không bị mất trí_nhớ có nhiều thay_đổi liên_quan đến Alzheimer trong bệnh_lý thần_kinh tau hơn so với nhóm đối_chứng , cho thấy mối liên_hệ giữa bệnh_lý tau và run .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 92,842 training samples
- Columns:
sentence1
andsentence2
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 type string string details - min: 13 tokens
- mean: 60.83 tokens
- max: 128 tokens
- min: 3 tokens
- mean: 48.05 tokens
- max: 128 tokens
- Samples:
sentence1 sentence2 Trong nghiên_cứu hiện_tại , hoạt_hoá P21 bằng hoạt_hoá gen do RNA ( RNAa ) gây ra hoạt_động chống khối_u trong ống_nghiệm trên dòng tế_bào u thần_kinh đệm SHG-44 của người .
dsRNA nhắm vào vùng khởi_động p21 ( dsP 21 ) đã gây cảm_ứng đáng_kể sự biểu_hiện của p21 ở mức phiên mã và protein , và làm giảm sự biểu_hiện của survivin .
Kết_quả của nghiên_cứu này cho thấy một sự tương_đồng về trình_tự không mong_đợi của các protein họ GH97 với glycoside hydrolase từ một_số họ khác , có cấu_trúc nếp gấp ( beta / alpha ) 8 của miền xúc_tác và cơ_chế giữ lại quá_trình thuỷ_phân liên_kết glycoside .
GH97 là một họ mới của glycoside hydrolase , có liên_quan đến họ siêu alpha-galactosidase.
MRI là một công_cụ hiệu_quả để dự_đoán đáp_ứng với NAC .
Phân giai MRI sau hoá_trị tân_bổ_trợ cho ung_thư vú : sinh_học khối_u có ảnh_hưởng đến độ_chính_xác không ?
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 3e-05num_train_epochs
: 10warmup_ratio
: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0345 | 100 | 4.4987 |
0.0689 | 200 | 3.5509 |
0.1034 | 300 | 2.2814 |
0.1378 | 400 | 1.3726 |
0.1723 | 500 | 1.0296 |
0.2068 | 600 | 0.7233 |
0.2412 | 700 | 0.5698 |
0.2757 | 800 | 0.4624 |
0.3101 | 900 | 0.4061 |
0.3446 | 1000 | 0.3497 |
0.3790 | 1100 | 0.2957 |
0.4135 | 1200 | 0.2716 |
0.4480 | 1300 | 0.2456 |
0.4824 | 1400 | 0.2431 |
0.5169 | 1500 | 0.1974 |
0.5513 | 1600 | 0.2078 |
0.5858 | 1700 | 0.2016 |
0.6203 | 1800 | 0.2097 |
0.6547 | 1900 | 0.1855 |
0.6892 | 2000 | 0.1789 |
0.7236 | 2100 | 0.1753 |
0.7581 | 2200 | 0.1629 |
0.7926 | 2300 | 0.1748 |
0.8270 | 2400 | 0.1578 |
0.8615 | 2500 | 0.1452 |
0.8959 | 2600 | 0.1377 |
0.9304 | 2700 | 0.1379 |
0.9649 | 2800 | 0.1439 |
0.9993 | 2900 | 0.1434 |
1.0338 | 3000 | 0.1139 |
1.0682 | 3100 | 0.0966 |
1.1027 | 3200 | 0.1121 |
1.1371 | 3300 | 0.0996 |
1.1716 | 3400 | 0.1095 |
1.2061 | 3500 | 0.1031 |
1.2405 | 3600 | 0.1149 |
1.2750 | 3700 | 0.1239 |
1.3094 | 3800 | 0.0969 |
1.3439 | 3900 | 0.1044 |
1.3784 | 4000 | 0.1141 |
1.4128 | 4100 | 0.0894 |
1.4473 | 4200 | 0.1172 |
1.4817 | 4300 | 0.1009 |
1.5162 | 4400 | 0.0904 |
1.5507 | 4500 | 0.1198 |
1.5851 | 4600 | 0.0956 |
1.6196 | 4700 | 0.1061 |
1.6540 | 4800 | 0.0867 |
1.6885 | 4900 | 0.0908 |
1.7229 | 5000 | 0.1025 |
1.7574 | 5100 | 0.1099 |
1.7919 | 5200 | 0.0932 |
1.8263 | 5300 | 0.0848 |
1.8608 | 5400 | 0.1027 |
1.8952 | 5500 | 0.0851 |
1.9297 | 5600 | 0.0917 |
1.9642 | 5700 | 0.0883 |
1.9986 | 5800 | 0.0931 |
2.0331 | 5900 | 0.0625 |
2.0675 | 6000 | 0.0503 |
2.1020 | 6100 | 0.0627 |
2.1365 | 6200 | 0.0725 |
2.1709 | 6300 | 0.0529 |
2.2054 | 6400 | 0.0591 |
2.2398 | 6500 | 0.0501 |
2.2743 | 6600 | 0.0608 |
2.3088 | 6700 | 0.0616 |
2.3432 | 6800 | 0.0492 |
2.3777 | 6900 | 0.0556 |
2.4121 | 7000 | 0.0744 |
2.4466 | 7100 | 0.0661 |
2.4810 | 7200 | 0.0554 |
2.5155 | 7300 | 0.0615 |
2.5500 | 7400 | 0.0565 |
2.5844 | 7500 | 0.0628 |
2.6189 | 7600 | 0.0527 |
2.6533 | 7700 | 0.069 |
2.6878 | 7800 | 0.0666 |
2.7223 | 7900 | 0.0642 |
2.7567 | 8000 | 0.0601 |
2.7912 | 8100 | 0.0564 |
2.8256 | 8200 | 0.0549 |
2.8601 | 8300 | 0.0552 |
2.8946 | 8400 | 0.0692 |
2.9290 | 8500 | 0.0607 |
2.9635 | 8600 | 0.0537 |
2.9979 | 8700 | 0.0534 |
3.0324 | 8800 | 0.0365 |
3.0669 | 8900 | 0.041 |
3.1013 | 9000 | 0.0405 |
3.1358 | 9100 | 0.0362 |
3.1702 | 9200 | 0.0365 |
3.2047 | 9300 | 0.0451 |
3.2391 | 9400 | 0.0363 |
3.2736 | 9500 | 0.0444 |
3.3081 | 9600 | 0.0349 |
3.3425 | 9700 | 0.0445 |
3.3770 | 9800 | 0.0491 |
3.4114 | 9900 | 0.0429 |
3.4459 | 10000 | 0.0399 |
3.4804 | 10100 | 0.0364 |
3.5148 | 10200 | 0.0429 |
3.5493 | 10300 | 0.0394 |
3.5837 | 10400 | 0.0397 |
3.6182 | 10500 | 0.0406 |
3.6527 | 10600 | 0.038 |
3.6871 | 10700 | 0.0379 |
3.7216 | 10800 | 0.0392 |
3.7560 | 10900 | 0.0395 |
3.7905 | 11000 | 0.0331 |
3.8249 | 11100 | 0.0415 |
3.8594 | 11200 | 0.0421 |
3.8939 | 11300 | 0.0371 |
3.9283 | 11400 | 0.0333 |
3.9628 | 11500 | 0.0352 |
3.9972 | 11600 | 0.0371 |
4.0317 | 11700 | 0.0266 |
4.0662 | 11800 | 0.0288 |
4.1006 | 11900 | 0.0281 |
4.1351 | 12000 | 0.0318 |
4.1695 | 12100 | 0.0256 |
4.2040 | 12200 | 0.0275 |
4.2385 | 12300 | 0.0245 |
4.2729 | 12400 | 0.0295 |
4.3074 | 12500 | 0.0282 |
4.3418 | 12600 | 0.0286 |
4.3763 | 12700 | 0.0231 |
4.4108 | 12800 | 0.03 |
4.4452 | 12900 | 0.0244 |
4.4797 | 13000 | 0.0231 |
4.5141 | 13100 | 0.0222 |
4.5486 | 13200 | 0.027 |
4.5830 | 13300 | 0.0301 |
4.6175 | 13400 | 0.0256 |
4.6520 | 13500 | 0.0325 |
4.6864 | 13600 | 0.0291 |
4.7209 | 13700 | 0.0263 |
4.7553 | 13800 | 0.0215 |
4.7898 | 13900 | 0.0277 |
4.8243 | 14000 | 0.024 |
4.8587 | 14100 | 0.0242 |
4.8932 | 14200 | 0.0259 |
4.9276 | 14300 | 0.0279 |
4.9621 | 14400 | 0.0247 |
4.9966 | 14500 | 0.0285 |
5.0310 | 14600 | 0.0206 |
5.0655 | 14700 | 0.0183 |
5.0999 | 14800 | 0.0161 |
5.1344 | 14900 | 0.019 |
5.1688 | 15000 | 0.0198 |
5.2033 | 15100 | 0.0174 |
5.2378 | 15200 | 0.0157 |
5.2722 | 15300 | 0.0191 |
5.3067 | 15400 | 0.0181 |
5.3411 | 15500 | 0.0165 |
5.3756 | 15600 | 0.018 |
5.4101 | 15700 | 0.0194 |
5.4445 | 15800 | 0.0221 |
5.4790 | 15900 | 0.017 |
5.5134 | 16000 | 0.019 |
5.5479 | 16100 | 0.0166 |
5.5824 | 16200 | 0.0156 |
5.6168 | 16300 | 0.0248 |
5.6513 | 16400 | 0.0189 |
5.6857 | 16500 | 0.0188 |
5.7202 | 16600 | 0.0191 |
5.7547 | 16700 | 0.02 |
5.7891 | 16800 | 0.0157 |
5.8236 | 16900 | 0.0247 |
5.8580 | 17000 | 0.0218 |
5.8925 | 17100 | 0.0191 |
5.9269 | 17200 | 0.0141 |
5.9614 | 17300 | 0.0203 |
5.9959 | 17400 | 0.0169 |
6.0303 | 17500 | 0.0122 |
6.0648 | 17600 | 0.0128 |
6.0992 | 17700 | 0.0151 |
6.1337 | 17800 | 0.0162 |
6.1682 | 17900 | 0.0137 |
6.2026 | 18000 | 0.0124 |
6.2371 | 18100 | 0.0127 |
6.2715 | 18200 | 0.0152 |
6.3060 | 18300 | 0.0151 |
6.3405 | 18400 | 0.0164 |
6.3749 | 18500 | 0.0131 |
6.4094 | 18600 | 0.0155 |
6.4438 | 18700 | 0.0166 |
6.4783 | 18800 | 0.0149 |
6.5127 | 18900 | 0.0165 |
6.5472 | 19000 | 0.0181 |
6.5817 | 19100 | 0.014 |
6.6161 | 19200 | 0.0158 |
6.6506 | 19300 | 0.0171 |
6.6850 | 19400 | 0.0156 |
6.7195 | 19500 | 0.0143 |
6.7540 | 19600 | 0.0142 |
6.7884 | 19700 | 0.0151 |
6.8229 | 19800 | 0.0153 |
6.8573 | 19900 | 0.0141 |
6.8918 | 20000 | 0.0169 |
6.9263 | 20100 | 0.016 |
6.9607 | 20200 | 0.0128 |
6.9952 | 20300 | 0.0145 |
7.0296 | 20400 | 0.0103 |
7.0641 | 20500 | 0.0128 |
7.0986 | 20600 | 0.0088 |
7.1330 | 20700 | 0.0146 |
7.1675 | 20800 | 0.0101 |
7.2019 | 20900 | 0.0145 |
7.2364 | 21000 | 0.0141 |
7.2708 | 21100 | 0.0098 |
7.3053 | 21200 | 0.011 |
7.3398 | 21300 | 0.0117 |
7.3742 | 21400 | 0.0115 |
7.4087 | 21500 | 0.0129 |
7.4431 | 21600 | 0.0121 |
7.4776 | 21700 | 0.0096 |
7.5121 | 21800 | 0.0125 |
7.5465 | 21900 | 0.0115 |
7.5810 | 22000 | 0.0147 |
7.6154 | 22100 | 0.0149 |
7.6499 | 22200 | 0.0133 |
7.6844 | 22300 | 0.0127 |
7.7188 | 22400 | 0.0137 |
7.7533 | 22500 | 0.0113 |
7.7877 | 22600 | 0.0136 |
7.8222 | 22700 | 0.0128 |
7.8567 | 22800 | 0.0127 |
7.8911 | 22900 | 0.0154 |
7.9256 | 23000 | 0.0118 |
7.9600 | 23100 | 0.0118 |
7.9945 | 23200 | 0.0128 |
8.0289 | 23300 | 0.0098 |
8.0634 | 23400 | 0.0103 |
8.0979 | 23500 | 0.0125 |
8.1323 | 23600 | 0.0109 |
8.1668 | 23700 | 0.0083 |
8.2012 | 23800 | 0.0112 |
8.2357 | 23900 | 0.0108 |
8.2702 | 24000 | 0.0113 |
8.3046 | 24100 | 0.0107 |
8.3391 | 24200 | 0.011 |
8.3735 | 24300 | 0.01 |
8.4080 | 24400 | 0.0104 |
8.4425 | 24500 | 0.0099 |
8.4769 | 24600 | 0.0106 |
8.5114 | 24700 | 0.0111 |
8.5458 | 24800 | 0.0111 |
8.5803 | 24900 | 0.0105 |
8.6147 | 25000 | 0.0091 |
8.6492 | 25100 | 0.0128 |
8.6837 | 25200 | 0.0125 |
8.7181 | 25300 | 0.0115 |
8.7526 | 25400 | 0.0119 |
8.7870 | 25500 | 0.0115 |
8.8215 | 25600 | 0.0073 |
8.8560 | 25700 | 0.0107 |
8.8904 | 25800 | 0.012 |
8.9249 | 25900 | 0.0113 |
8.9593 | 26000 | 0.0104 |
8.9938 | 26100 | 0.0124 |
9.0283 | 26200 | 0.0092 |
9.0627 | 26300 | 0.0129 |
9.0972 | 26400 | 0.0094 |
9.1316 | 26500 | 0.0109 |
9.1661 | 26600 | 0.0094 |
9.2006 | 26700 | 0.0098 |
9.2350 | 26800 | 0.0103 |
9.2695 | 26900 | 0.0097 |
9.3039 | 27000 | 0.0106 |
9.3384 | 27100 | 0.0079 |
9.3728 | 27200 | 0.0082 |
9.4073 | 27300 | 0.0095 |
9.4418 | 27400 | 0.0086 |
9.4762 | 27500 | 0.009 |
9.5107 | 27600 | 0.0089 |
9.5451 | 27700 | 0.0102 |
9.5796 | 27800 | 0.0111 |
9.6141 | 27900 | 0.0104 |
9.6485 | 28000 | 0.011 |
9.6830 | 28100 | 0.0096 |
9.7174 | 28200 | 0.0096 |
9.7519 | 28300 | 0.0106 |
9.7864 | 28400 | 0.0076 |
9.8208 | 28500 | 0.0079 |
9.8553 | 28600 | 0.0097 |
9.8897 | 28700 | 0.0083 |
9.9242 | 28800 | 0.0077 |
9.9586 | 28900 | 0.0104 |
9.9931 | 29000 | 0.0107 |
Framework Versions
- Python: 3.9.19
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.2.0+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for vimednli/vipubmedt5-w_multi-SynPD
Base model
tmnam20/ViPubMedT5