t5-summarization-one-shot-base-random

This model is a fine-tuned version of google/flan-t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0562
  • Rouge: {'rouge1': 44.8059, 'rouge2': 22.6975, 'rougeL': 22.1144, 'rougeLsum': 22.1144}
  • Bert Score: 0.8826
  • Bleurt 20: -0.6909
  • Gen Len: 14.41

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge Bert Score Bleurt 20 Gen Len
2.1793 1.0 601 1.9158 {'rouge1': 43.6025, 'rouge2': 20.0332, 'rougeL': 20.768, 'rougeLsum': 20.768} 0.8742 -0.8256 15.065
1.7262 2.0 1202 1.8547 {'rouge1': 44.219, 'rouge2': 21.2046, 'rougeL': 21.6413, 'rougeLsum': 21.6413} 0.8822 -0.7138 14.25
1.5456 3.0 1803 1.8743 {'rouge1': 43.0548, 'rouge2': 20.0052, 'rougeL': 21.7232, 'rougeLsum': 21.7232} 0.8799 -0.7351 14.215
1.3864 4.0 2404 1.8856 {'rouge1': 44.0749, 'rouge2': 22.1873, 'rougeL': 22.3386, 'rougeLsum': 22.3386} 0.8824 -0.721 14.265
1.1726 5.0 3005 1.9377 {'rouge1': 42.5277, 'rouge2': 21.1762, 'rougeL': 22.0771, 'rougeLsum': 22.0771} 0.8861 -0.6948 13.84
1.0126 6.0 3606 2.0305 {'rouge1': 43.3254, 'rouge2': 21.2322, 'rougeL': 21.9138, 'rougeLsum': 21.9138} 0.8812 -0.6905 14.17
0.9277 7.0 4207 2.0788 {'rouge1': 44.4591, 'rouge2': 21.485, 'rougeL': 22.1901, 'rougeLsum': 22.1901} 0.8842 -0.6869 14.15
0.8581 8.0 4808 2.1667 {'rouge1': 43.3585, 'rouge2': 22.0956, 'rougeL': 22.6725, 'rougeLsum': 22.6725} 0.8853 -0.697 13.99
0.7611 9.0 5409 2.2544 {'rouge1': 45.7618, 'rouge2': 22.8349, 'rougeL': 22.4909, 'rougeLsum': 22.4909} 0.8826 -0.6682 14.54
0.7624 10.0 6010 2.3085 {'rouge1': 44.6569, 'rouge2': 21.8496, 'rougeL': 22.2368, 'rougeLsum': 22.2368} 0.8818 -0.684 14.42
0.5815 11.0 6611 2.4558 {'rouge1': 44.248, 'rouge2': 22.0111, 'rougeL': 22.4011, 'rougeLsum': 22.4011} 0.884 -0.6895 14.095
0.5842 12.0 7212 2.5537 {'rouge1': 44.4124, 'rouge2': 22.0939, 'rougeL': 22.2455, 'rougeLsum': 22.2455} 0.8846 -0.6832 14.355
0.5936 13.0 7813 2.5306 {'rouge1': 44.3422, 'rouge2': 22.7948, 'rougeL': 22.3682, 'rougeLsum': 22.3682} 0.8838 -0.7135 14.255
0.4445 14.0 8414 2.7685 {'rouge1': 45.4309, 'rouge2': 23.2292, 'rougeL': 23.2752, 'rougeLsum': 23.2752} 0.8826 -0.6563 14.77
0.3908 15.0 9015 2.8443 {'rouge1': 44.6809, 'rouge2': 22.1492, 'rougeL': 21.9333, 'rougeLsum': 21.9333} 0.8828 -0.6801 14.43
0.4475 16.0 9616 2.8570 {'rouge1': 45.6488, 'rouge2': 22.8303, 'rougeL': 22.3293, 'rougeLsum': 22.3293} 0.8846 -0.6545 14.6
0.3963 17.0 10217 2.8927 {'rouge1': 45.3239, 'rouge2': 22.4719, 'rougeL': 22.3093, 'rougeLsum': 22.3093} 0.8838 -0.6512 14.4
0.4013 18.0 10818 3.0375 {'rouge1': 44.663, 'rouge2': 22.4292, 'rougeL': 21.7939, 'rougeLsum': 21.7939} 0.8845 -0.6964 14.47
0.3355 19.0 11419 3.0206 {'rouge1': 45.1714, 'rouge2': 23.0105, 'rougeL': 22.1146, 'rougeLsum': 22.1146} 0.8829 -0.6828 14.435
0.385 20.0 12020 3.0562 {'rouge1': 44.8059, 'rouge2': 22.6975, 'rougeL': 22.1144, 'rougeLsum': 22.1144} 0.8826 -0.6909 14.41

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
-
Safetensors
Model size
248M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for veronica-girolimetti/t5-summarization-one-shot-base-random

Finetuned
(823)
this model