metadata
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- maywell/PiVoT-0.1-Starling-LM-RP
- WizardLM/WizardMath-7B-V1.1
base_model:
- maywell/PiVoT-0.1-Starling-LM-RP
- WizardLM/WizardMath-7B-V1.1
model-index:
- name: Rose-2x7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.27
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uproai/Rose-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.7
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uproai/Rose-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.37
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uproai/Rose-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 49.32
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uproai/Rose-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.79
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uproai/Rose-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.14
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=uproai/Rose-2x7B
name: Open LLM Leaderboard
Rose-2x7B
Rose-2x7B is a Mixure of Experts (MoE) made with the following models using Mergekit:
mergekit-moe mergekit_moe.yaml merge --copy-tokenizer --device cuda --low-cpu-memory
🧩 Configuration
base_model: uproai/ros-7b-v1
experts:
- source_model: maywell/PiVoT-0.1-Starling-LM-RP
positive_prompts:
- "storywriting"
- "write"
- "scene"
- "story"
- "character"
- source_model: WizardLM/WizardMath-7B-V1.1
positive_prompts:
- "reason"
- "math"
- "mathematics"
- "solve"
- "count"
tokenizer_source: union
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "uproai/Rose-2x7B"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 68.93 |
AI2 Reasoning Challenge (25-Shot) | 65.27 |
HellaSwag (10-Shot) | 85.70 |
MMLU (5-Shot) | 64.37 |
TruthfulQA (0-shot) | 49.32 |
Winogrande (5-shot) | 79.79 |
GSM8k (5-shot) | 69.14 |