Image-to-3D
Hunyuan3D-2
Diffusers
Safetensors
English
Chinese
text-to-3d
ZeqiangLai's picture
Upload 20 files (#30)
8878bbe verified
raw
history blame
41.2 kB
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import copy
import json
import os
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models import UNet2DConditionModel
from diffusers.models.attention_processor import Attention
from diffusers.models.transformers.transformer_2d import BasicTransformerBlock
from einops import rearrange
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
# "feed_forward_chunk_size" can be used to save memory
if hidden_states.shape[chunk_dim] % chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
ff_output = torch.cat(
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
dim=chunk_dim,
)
return ff_output
class PoseRoPEAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def get_1d_rotary_pos_embed(
self,
dim: int,
pos: torch.Tensor,
theta: float = 10000.0,
linear_factor=1.0,
ntk_factor=1.0,
):
assert dim % 2 == 0
theta = theta * ntk_factor
freqs = (
1.0
/ (theta ** (torch.arange(0, dim, 2, dtype=pos.dtype, device=pos.device)[: (dim // 2)] / dim))
/ linear_factor
) # [D/2]
freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2]
# flux, hunyuan-dit, cogvideox
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
return freqs_cos, freqs_sin
def get_3d_rotary_pos_embed(
self,
position,
embed_dim,
voxel_resolution,
theta: int = 10000,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
RoPE for video tokens with 3D structure.
Args:
voxel_resolution (`int`):
The grid size of the spatial positional embedding (height, width).
theta (`float`):
Scaling factor for frequency computation.
Returns:
`torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
"""
assert position.shape[-1]==3
# Compute dimensions for each axis
dim_xy = embed_dim // 8 * 3
dim_z = embed_dim // 8 * 2
# Temporal frequencies
grid = torch.arange(voxel_resolution, dtype=torch.float32, device=position.device)
freqs_xy = self.get_1d_rotary_pos_embed(dim_xy, grid, theta=theta)
freqs_z = self.get_1d_rotary_pos_embed(dim_z, grid, theta=theta)
xy_cos, xy_sin = freqs_xy # both t_cos and t_sin has shape: voxel_resolution, dim_xy
z_cos, z_sin = freqs_z # both w_cos and w_sin has shape: voxel_resolution, dim_z
embed_flattn = position.view(-1, position.shape[-1])
x_cos = xy_cos[embed_flattn[:,0], :]
x_sin = xy_sin[embed_flattn[:,0], :]
y_cos = xy_cos[embed_flattn[:,1], :]
y_sin = xy_sin[embed_flattn[:,1], :]
z_cos = z_cos[embed_flattn[:,2], :]
z_sin = z_sin[embed_flattn[:,2], :]
cos = torch.cat((x_cos, y_cos, z_cos), dim=-1)
sin = torch.cat((x_sin, y_sin, z_sin), dim=-1)
cos = cos.view(*position.shape[:-1], embed_dim)
sin = sin.view(*position.shape[:-1], embed_dim)
return cos, sin
def apply_rotary_emb(
self,
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]]
):
cos, sin = freqs_cis # [S, D]
cos, sin = cos.to(x.device), sin.to(x.device)
cos = cos.unsqueeze(1)
sin = sin.unsqueeze(1)
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_indices: Dict = None,
temb: Optional[torch.Tensor] = None,
*args,
**kwargs,
) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
if position_indices is not None:
if head_dim in position_indices:
image_rotary_emb = position_indices[head_dim]
else:
image_rotary_emb = self.get_3d_rotary_pos_embed(position_indices['voxel_indices'], head_dim, voxel_resolution=position_indices['voxel_resolution'])
position_indices[head_dim] = image_rotary_emb
query = self.apply_rotary_emb(query, image_rotary_emb)
key = self.apply_rotary_emb(key, image_rotary_emb)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class IPAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(self, scale=0.0):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.scale = scale
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
ip_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
*args,
**kwargs,
) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# for ip adapter
if ip_hidden_states is not None:
ip_key = attn.to_k_ip(ip_hidden_states)
ip_value = attn.to_v_ip(ip_hidden_states)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
hidden_states = hidden_states + self.scale * ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class Basic2p5DTransformerBlock(torch.nn.Module):
def __init__(self, transformer: BasicTransformerBlock, layer_name, use_ipa=True, use_ma=True, use_ra=True) -> None:
super().__init__()
self.transformer = transformer
self.layer_name = layer_name
self.use_ipa = use_ipa
self.use_ma = use_ma
self.use_ra = use_ra
if use_ipa:
self.attn2.set_processor(IPAttnProcessor2_0())
cross_attention_dim = 1024
self.attn2.to_k_ip = nn.Linear(cross_attention_dim, self.dim, bias=False)
self.attn2.to_v_ip = nn.Linear(cross_attention_dim, self.dim, bias=False)
# multiview attn
if self.use_ma:
self.attn_multiview = Attention(
query_dim=self.dim,
heads=self.num_attention_heads,
dim_head=self.attention_head_dim,
dropout=self.dropout,
bias=self.attention_bias,
cross_attention_dim=None,
upcast_attention=self.attn1.upcast_attention,
out_bias=True,
processor=PoseRoPEAttnProcessor2_0(),
)
# ref attn
if self.use_ra:
self.attn_refview = Attention(
query_dim=self.dim,
heads=self.num_attention_heads,
dim_head=self.attention_head_dim,
dropout=self.dropout,
bias=self.attention_bias,
cross_attention_dim=None,
upcast_attention=self.attn1.upcast_attention,
out_bias=True,
)
self._initialize_attn_weights()
def _initialize_attn_weights(self):
if self.use_ma:
self.attn_multiview.load_state_dict(self.attn1.state_dict())
with torch.no_grad():
for layer in self.attn_multiview.to_out:
for param in layer.parameters():
param.zero_()
if self.use_ra:
self.attn_refview.load_state_dict(self.attn1.state_dict())
with torch.no_grad():
for layer in self.attn_refview.to_out:
for param in layer.parameters():
param.zero_()
if self.use_ipa:
self.attn2.to_k_ip.load_state_dict(self.attn2.to_k.state_dict())
self.attn2.to_v_ip.load_state_dict(self.attn2.to_v.state_dict())
def __getattr__(self, name: str):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.transformer, name)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.Tensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
batch_size = hidden_states.shape[0]
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
num_in_batch = cross_attention_kwargs.pop('num_in_batch', 1)
mode = cross_attention_kwargs.pop('mode', None)
condition_embed_dict = cross_attention_kwargs.pop("condition_embed_dict", None)
ip_hidden_states = cross_attention_kwargs.pop("ip_hidden_states", None)
position_attn_mask = cross_attention_kwargs.pop("position_attn_mask", None)
position_voxel_indices = cross_attention_kwargs.pop("position_voxel_indices", None)
if self.norm_type == "ada_norm":
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.norm_type == "ada_norm_zero":
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
norm_hidden_states = self.norm1(hidden_states)
elif self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
elif self.norm_type == "ada_norm_single":
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
else:
raise ValueError("Incorrect norm used")
if self.pos_embed is not None:
norm_hidden_states = self.pos_embed(norm_hidden_states)
# 1. Prepare GLIGEN inputs
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.norm_type == "ada_norm_zero":
attn_output = gate_msa.unsqueeze(1) * attn_output
elif self.norm_type == "ada_norm_single":
attn_output = gate_msa * attn_output
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 1.2 Reference Attention
if 'w' in mode:
condition_embed_dict[self.layer_name] = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch) # B, (N L), C
if 'r' in mode:
condition_embed = condition_embed_dict[self.layer_name].unsqueeze(1).repeat(1,num_in_batch,1,1) # B N L C
condition_embed = rearrange(condition_embed, 'b n l c -> (b n) l c')
attn_output = self.attn_refview(
norm_hidden_states,
encoder_hidden_states=condition_embed,
attention_mask=None,
**cross_attention_kwargs
)
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 1.3 Multiview Attention
if num_in_batch > 1 and self.use_ma:
multivew_hidden_states = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch)
position_mask = None
if position_attn_mask is not None:
if multivew_hidden_states.shape[1] in position_attn_mask:
position_mask = position_attn_mask[multivew_hidden_states.shape[1]]
position_indices = None
if position_voxel_indices is not None:
if multivew_hidden_states.shape[1] in position_voxel_indices:
position_indices = position_voxel_indices[multivew_hidden_states.shape[1]]
attn_output = self.attn_multiview(
multivew_hidden_states,
encoder_hidden_states=multivew_hidden_states,
attention_mask=position_mask,
position_indices=position_indices,
**cross_attention_kwargs
)
attn_output = rearrange(attn_output, 'b (n l) c -> (b n) l c', n=num_in_batch)
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 1.2 GLIGEN Control
if gligen_kwargs is not None:
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
# 3. Cross-Attention
if self.attn2 is not None:
if self.norm_type == "ada_norm":
norm_hidden_states = self.norm2(hidden_states, timestep)
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
norm_hidden_states = self.norm2(hidden_states)
elif self.norm_type == "ada_norm_single":
# For PixArt norm2 isn't applied here:
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
norm_hidden_states = hidden_states
elif self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
else:
raise ValueError("Incorrect norm")
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
norm_hidden_states = self.pos_embed(norm_hidden_states)
if ip_hidden_states is not None:
ip_hidden_states = ip_hidden_states.unsqueeze(1).repeat(1,num_in_batch,1,1) # B N L C
ip_hidden_states = rearrange(ip_hidden_states, 'b n l c -> (b n) l c')
if self.use_ipa:
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
ip_hidden_states=ip_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
else:
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 4. Feed-forward
# i2vgen doesn't have this norm 🤷‍♂️
if self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
elif not self.norm_type == "ada_norm_single":
norm_hidden_states = self.norm3(hidden_states)
if self.norm_type == "ada_norm_zero":
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self.norm_type == "ada_norm_single":
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
else:
ff_output = self.ff(norm_hidden_states)
if self.norm_type == "ada_norm_zero":
ff_output = gate_mlp.unsqueeze(1) * ff_output
elif self.norm_type == "ada_norm_single":
ff_output = gate_mlp * ff_output
hidden_states = ff_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
return hidden_states
@torch.no_grad()
def compute_voxel_grid_mask(position, grid_resolution=8):
position = position.half()
B,N,_,H,W = position.shape
assert H%grid_resolution==0 and W%grid_resolution==0
valid_mask = (position != 1).all(dim=2, keepdim=True)
valid_mask = valid_mask.expand_as(position)
position[valid_mask==False] = 0
position = rearrange(position, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution)
valid_mask = rearrange(valid_mask, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution)
grid_position = position.sum(dim=(-2, -1))
count_masked = valid_mask.sum(dim=(-2, -1))
grid_position = grid_position / count_masked.clamp(min=1)
grid_position[count_masked<5] = 0
grid_position = grid_position.permute(0,1,4,2,3)
grid_position = rearrange(grid_position, 'b n c h w -> b n (h w) c')
grid_position_expanded_1 = grid_position.unsqueeze(2).unsqueeze(4) # 形状变为 B, N, 1, L, 1, 3
grid_position_expanded_2 = grid_position.unsqueeze(1).unsqueeze(3) # 形状变为 B, 1, N, 1, L, 3
# 计算欧氏距离
distances = torch.norm(grid_position_expanded_1 - grid_position_expanded_2, dim=-1) # 形状为 B, N, N, L, L
weights = distances
grid_distance = 1.73/grid_resolution
#weights = weights*-32
#weights = weights.clamp(min=-10000.0)
weights = weights< grid_distance
return weights
def compute_multi_resolution_mask(position_maps, grid_resolutions=[32, 16, 8]):
position_attn_mask = {}
with torch.no_grad():
for grid_resolution in grid_resolutions:
position_mask = compute_voxel_grid_mask(position_maps, grid_resolution)
position_mask = rearrange(position_mask, 'b ni nj li lj -> b (ni li) (nj lj)')
position_attn_mask[position_mask.shape[1]] = position_mask
return position_attn_mask
@torch.no_grad()
def compute_discrete_voxel_indice(position, grid_resolution=8, voxel_resolution=128):
position = position.half()
B,N,_,H,W = position.shape
assert H%grid_resolution==0 and W%grid_resolution==0
valid_mask = (position != 1).all(dim=2, keepdim=True)
valid_mask = valid_mask.expand_as(position)
position[valid_mask==False] = 0
position = rearrange(position, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution)
valid_mask = rearrange(valid_mask, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution)
grid_position = position.sum(dim=(-2, -1))
count_masked = valid_mask.sum(dim=(-2, -1))
grid_position = grid_position / count_masked.clamp(min=1)
grid_position[count_masked<5] = 0
grid_position = grid_position.permute(0,1,4,2,3).clamp(0, 1) # B N C H W
voxel_indices = grid_position * (voxel_resolution - 1)
voxel_indices = torch.round(voxel_indices).long()
return voxel_indices
def compute_multi_resolution_discrete_voxel_indice(position_maps, grid_resolutions=[64, 32, 16, 8], voxel_resolutions=[512, 256, 128, 64]):
voxel_indices = {}
with torch.no_grad():
for grid_resolution, voxel_resolution in zip(grid_resolutions, voxel_resolutions):
voxel_indice = compute_discrete_voxel_indice(position_maps, grid_resolution, voxel_resolution)
voxel_indice = rearrange(voxel_indice, 'b n c h w -> b (n h w) c')
voxel_indices[voxel_indice.shape[1]] = {'voxel_indices':voxel_indice, 'voxel_resolution':voxel_resolution}
return voxel_indices
class ImageProjModel(torch.nn.Module):
"""Projection Model"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.generator = None
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(
-1, self.clip_extra_context_tokens, self.cross_attention_dim
)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
class UNet2p5DConditionModel(torch.nn.Module):
def __init__(self, unet: UNet2DConditionModel) -> None:
super().__init__()
self.unet = unet
self.unet_dual = copy.deepcopy(unet)
self.init_camera_embedding()
self.init_attention(self.unet, use_ipa=True, use_ma=True, use_ra=True)
self.init_attention(self.unet_dual, use_ipa=False, use_ma=False, use_ra=False)
self.init_condition()
@staticmethod
def from_pretrained(pretrained_model_name_or_path, **kwargs):
torch_dtype = kwargs.pop('torch_dtype', torch.float32)
config_path = os.path.join(pretrained_model_name_or_path, 'config.json')
unet_ckpt_path = os.path.join(pretrained_model_name_or_path, 'diffusion_pytorch_model.bin')
with open(config_path, 'r', encoding='utf-8') as file:
config = json.load(file)
unet = UNet2DConditionModel(**config)
unet = UNet2p5DConditionModel(unet)
unet.unet.conv_in = torch.nn.Conv2d(
12,
unet.unet.conv_in.out_channels,
kernel_size=unet.unet.conv_in.kernel_size,
stride=unet.unet.conv_in.stride,
padding=unet.unet.conv_in.padding,
dilation=unet.unet.conv_in.dilation,
groups=unet.unet.conv_in.groups,
bias=unet.unet.conv_in.bias is not None)
unet_ckpt = torch.load(unet_ckpt_path, map_location='cpu', weights_only=True)
unet.load_state_dict(unet_ckpt, strict=True)
unet = unet.to(torch_dtype)
return unet
def init_condition(self):
self.unet.learned_text_clip_gen = nn.Parameter(torch.randn(1,77,1024))
self.unet.learned_text_clip_ref = nn.Parameter(torch.randn(1,77,1024))
self.unet.image_proj_model = ImageProjModel(
cross_attention_dim=self.unet.config.cross_attention_dim,
clip_embeddings_dim=1024,
)
def init_camera_embedding(self):
self.max_num_ref_image = 5
self.max_num_gen_image = 12*3+4*2
time_embed_dim = 1280
self.unet.class_embedding = nn.Embedding(self.max_num_ref_image+self.max_num_gen_image, time_embed_dim)
# 将嵌入层的权重初始化为全零
nn.init.zeros_(self.unet.class_embedding.weight)
def init_attention(self, unet, use_ipa=True, use_ma=True, use_ra=True):
for down_block_i, down_block in enumerate(unet.down_blocks):
if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention:
for attn_i, attn in enumerate(down_block.attentions):
for transformer_i, transformer in enumerate(attn.transformer_blocks):
if isinstance(transformer, BasicTransformerBlock):
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'down_{down_block_i}_{attn_i}_{transformer_i}',use_ipa,use_ma,use_ra)
if hasattr(unet.mid_block, "has_cross_attention") and unet.mid_block.has_cross_attention:
for attn_i, attn in enumerate(unet.mid_block.attentions):
for transformer_i, transformer in enumerate(attn.transformer_blocks):
if isinstance(transformer, BasicTransformerBlock):
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'mid_{attn_i}_{transformer_i}',use_ipa,use_ma,use_ra)
for up_block_i, up_block in enumerate(unet.up_blocks):
if hasattr(up_block, "has_cross_attention") and up_block.has_cross_attention:
for attn_i, attn in enumerate(up_block.attentions):
for transformer_i, transformer in enumerate(attn.transformer_blocks):
if isinstance(transformer, BasicTransformerBlock):
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'up_{up_block_i}_{attn_i}_{transformer_i}',use_ipa,use_ma,use_ra)
def __getattr__(self, name: str):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.unet, name)
def forward(
self, sample, timestep, encoder_hidden_states, class_labels=None,
*args, cross_attention_kwargs=None, down_intrablock_additional_residuals=None,
down_block_res_samples=None, mid_block_res_sample=None,
**cached_condition,
):
B, N_gen, _, H, W = sample.shape
camera_info_gen = cached_condition['camera_info_gen'] + self.max_num_ref_image
camera_info_gen = rearrange(camera_info_gen, 'b n -> (b n)')
sample = [sample]
if 'normal_imgs' in cached_condition:
sample.append(cached_condition["normal_imgs"])
if 'position_imgs' in cached_condition:
sample.append(cached_condition["position_imgs"])
sample = torch.cat(sample, dim=2)
sample = rearrange(sample, 'b n c h w -> (b n) c h w')
encoder_hidden_states_gen = encoder_hidden_states.unsqueeze(1).repeat(1, N_gen, 1, 1)
encoder_hidden_states_gen = rearrange(encoder_hidden_states_gen, 'b n l c -> (b n) l c')
use_position_mask = False
use_position_rope = True
position_attn_mask = None
if use_position_mask:
if 'position_attn_mask' in cached_condition:
position_attn_mask = cached_condition['position_attn_mask']
else:
if 'position_maps' in cached_condition:
position_attn_mask = compute_multi_resolution_mask(cached_condition['position_maps'])
position_voxel_indices = None
if use_position_rope:
if 'position_voxel_indices' in cached_condition:
position_voxel_indices = cached_condition['position_voxel_indices']
else:
if 'position_maps' in cached_condition:
position_voxel_indices = compute_multi_resolution_discrete_voxel_indice(cached_condition['position_maps'])
if 'ip_hidden_states' in cached_condition:
ip_hidden_states = cached_condition['ip_hidden_states']
else:
if 'clip_embeds' in cached_condition:
ip_hidden_states = self.image_proj_model(cached_condition['clip_embeds'])
else:
ip_hidden_states = None
cached_condition['ip_hidden_states'] = ip_hidden_states
if 'condition_embed_dict' in cached_condition:
condition_embed_dict = cached_condition['condition_embed_dict']
else:
condition_embed_dict = {}
ref_latents = cached_condition['ref_latents']
N_ref = ref_latents.shape[1]
camera_info_ref = cached_condition['camera_info_ref']
camera_info_ref = rearrange(camera_info_ref, 'b n -> (b n)')
#ref_latents = [ref_latents]
#if 'normal_imgs' in cached_condition:
# ref_latents.append(torch.zeros_like(ref_latents[0]))
#if 'position_imgs' in cached_condition:
# ref_latents.append(torch.zeros_like(ref_latents[0]))
#ref_latents = torch.cat(ref_latents, dim=2)
ref_latents = rearrange(ref_latents, 'b n c h w -> (b n) c h w')
encoder_hidden_states_ref = self.learned_text_clip_ref.unsqueeze(1).repeat(B, N_ref, 1, 1)
encoder_hidden_states_ref = rearrange(encoder_hidden_states_ref, 'b n l c -> (b n) l c')
noisy_ref_latents = ref_latents
timestep_ref = 0
'''
if timestep.dim()>0:
timestep_ref = rearrange(timestep, '(b n) -> b n', b=B)[:,:1].repeat(1, N_ref)
timestep_ref = rearrange(timestep_ref, 'b n -> (b n)')
else:
timestep_ref = timestep
noise = torch.randn_like(noisy_ref_latents[:,:4,...])
if self.training:
noisy_ref_latents[:,:4,...] = self.train_sched.add_noise(noisy_ref_latents[:,:4,...], noise, timestep_ref)
noisy_ref_latents[:,:4,...] = self.train_sched.scale_model_input(noisy_ref_latents[:,:4,...], timestep_ref)
else:
noisy_ref_latents[:,:4,...] = self.val_sched.add_noise(noisy_ref_latents[:,:4,...], noise, timestep_ref.reshape(-1))
noisy_ref_latents[:,:4,...] = self.val_sched.scale_model_input(noisy_ref_latents[:,:4,...], timestep_ref.reshape(-1))
'''
self.unet_dual(
noisy_ref_latents, timestep_ref,
encoder_hidden_states=encoder_hidden_states_ref,
#class_labels=camera_info_ref,
# **kwargs
return_dict=False,
cross_attention_kwargs={
'mode':'w', 'num_in_batch':N_ref,
'condition_embed_dict':condition_embed_dict},
)
cached_condition['condition_embed_dict'] = condition_embed_dict
return self.unet(
sample, timestep,
encoder_hidden_states_gen, *args,
class_labels=camera_info_gen,
down_intrablock_additional_residuals=[
sample.to(dtype=self.unet.dtype) for sample in down_intrablock_additional_residuals
] if down_intrablock_additional_residuals is not None else None,
down_block_additional_residuals=[
sample.to(dtype=self.unet.dtype) for sample in down_block_res_samples
] if down_block_res_samples is not None else None,
mid_block_additional_residual=(
mid_block_res_sample.to(dtype=self.unet.dtype)
if mid_block_res_sample is not None else None
),
return_dict=False,
cross_attention_kwargs={
'mode':'r', 'num_in_batch':N_gen,
'ip_hidden_states':ip_hidden_states,
'condition_embed_dict':condition_embed_dict,
'position_attn_mask':position_attn_mask,
'position_voxel_indices':position_voxel_indices
},
)