Image-to-3D
Hunyuan3D-2
Diffusers
Safetensors
English
Chinese
text-to-3d
File size: 41,188 Bytes
8878bbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.

# Copyright (C) 2024 THL A29 Limited, a Tencent company.  All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.

# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.

# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.


import copy
import json
import os
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models import UNet2DConditionModel
from diffusers.models.attention_processor import Attention
from diffusers.models.transformers.transformer_2d import BasicTransformerBlock
from einops import rearrange


def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
    # "feed_forward_chunk_size" can be used to save memory
    if hidden_states.shape[chunk_dim] % chunk_size != 0:
        raise ValueError(
            f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
        )

    num_chunks = hidden_states.shape[chunk_dim] // chunk_size
    ff_output = torch.cat(
        [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
        dim=chunk_dim,
    )
    return ff_output

class PoseRoPEAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def get_1d_rotary_pos_embed(
            self,
            dim: int,
            pos: torch.Tensor,
            theta: float = 10000.0,
            linear_factor=1.0,
            ntk_factor=1.0,
    ):
        assert dim % 2 == 0

        theta = theta * ntk_factor
        freqs = (
            1.0
            / (theta ** (torch.arange(0, dim, 2, dtype=pos.dtype, device=pos.device)[: (dim // 2)] / dim))
            / linear_factor
        )  # [D/2]
        freqs = torch.outer(pos, freqs)  # type: ignore   # [S, D/2]
        # flux, hunyuan-dit, cogvideox
        freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float()  # [S, D]
        freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float()  # [S, D]
        return freqs_cos, freqs_sin


    def get_3d_rotary_pos_embed(
            self,
            position,
            embed_dim, 
            voxel_resolution,
            theta: int = 10000,
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        """
        RoPE for video tokens with 3D structure.

        Args:
        voxel_resolution (`int`):
            The grid size of the spatial positional embedding (height, width).
        theta (`float`):
            Scaling factor for frequency computation.

        Returns:
            `torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
        """
        assert position.shape[-1]==3

        # Compute dimensions for each axis
        dim_xy = embed_dim // 8 * 3
        dim_z = embed_dim // 8 * 2

        # Temporal frequencies
        grid = torch.arange(voxel_resolution, dtype=torch.float32, device=position.device)
        freqs_xy = self.get_1d_rotary_pos_embed(dim_xy, grid, theta=theta)
        freqs_z = self.get_1d_rotary_pos_embed(dim_z, grid, theta=theta)

        xy_cos, xy_sin = freqs_xy  # both t_cos and t_sin has shape: voxel_resolution, dim_xy
        z_cos, z_sin = freqs_z  # both w_cos and w_sin has shape: voxel_resolution, dim_z

        embed_flattn = position.view(-1, position.shape[-1])
        x_cos = xy_cos[embed_flattn[:,0], :]
        x_sin = xy_sin[embed_flattn[:,0], :]
        y_cos = xy_cos[embed_flattn[:,1], :]
        y_sin = xy_sin[embed_flattn[:,1], :]
        z_cos = z_cos[embed_flattn[:,2], :]
        z_sin = z_sin[embed_flattn[:,2], :]

        cos = torch.cat((x_cos, y_cos, z_cos), dim=-1)
        sin = torch.cat((x_sin, y_sin, z_sin), dim=-1)

        cos = cos.view(*position.shape[:-1], embed_dim)
        sin = sin.view(*position.shape[:-1], embed_dim)
        return cos, sin

    def apply_rotary_emb(
            self, 
            x: torch.Tensor,
            freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]]
        ):
        cos, sin = freqs_cis  # [S, D]
        cos, sin = cos.to(x.device), sin.to(x.device)
        cos = cos.unsqueeze(1)
        sin = sin.unsqueeze(1)

        x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)  # [B, S, H, D//2]
        x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)

        out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)

        return out

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_indices: Dict = None,
        temb: Optional[torch.Tensor] = None,
        *args,
        **kwargs,
    ) -> torch.Tensor:
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)
        
        if position_indices is not None:
            if head_dim in position_indices:
                image_rotary_emb = position_indices[head_dim]
            else:
                image_rotary_emb = self.get_3d_rotary_pos_embed(position_indices['voxel_indices'], head_dim, voxel_resolution=position_indices['voxel_resolution'])
                position_indices[head_dim] = image_rotary_emb
            query = self.apply_rotary_emb(query, image_rotary_emb)
            key = self.apply_rotary_emb(key, image_rotary_emb)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states

class IPAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """

    def __init__(self, scale=0.0):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

        self.scale = scale

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        ip_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        *args,
        **kwargs,
    ) -> torch.Tensor:
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)
        

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # for ip adapter
        if ip_hidden_states is not None:

            ip_key = attn.to_k_ip(ip_hidden_states)
            ip_value = attn.to_v_ip(ip_hidden_states)

            ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

            # the output of sdp = (batch, num_heads, seq_len, head_dim)
            ip_hidden_states = F.scaled_dot_product_attention(
                query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
            )

            ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
            ip_hidden_states = ip_hidden_states.to(query.dtype)

            hidden_states = hidden_states + self.scale * ip_hidden_states

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states
        

class Basic2p5DTransformerBlock(torch.nn.Module):
    def __init__(self, transformer: BasicTransformerBlock, layer_name, use_ipa=True, use_ma=True, use_ra=True) -> None:
        super().__init__()
        self.transformer = transformer
        self.layer_name = layer_name
        self.use_ipa = use_ipa
        self.use_ma = use_ma
        self.use_ra = use_ra

        if use_ipa:
            self.attn2.set_processor(IPAttnProcessor2_0())
            cross_attention_dim = 1024
            self.attn2.to_k_ip = nn.Linear(cross_attention_dim, self.dim, bias=False)
            self.attn2.to_v_ip = nn.Linear(cross_attention_dim, self.dim, bias=False)
            
        # multiview attn
        if self.use_ma:
            self.attn_multiview = Attention(
                query_dim=self.dim,
                heads=self.num_attention_heads,
                dim_head=self.attention_head_dim,
                dropout=self.dropout,
                bias=self.attention_bias,
                cross_attention_dim=None,
                upcast_attention=self.attn1.upcast_attention,
                out_bias=True,
                processor=PoseRoPEAttnProcessor2_0(),
            )

        # ref attn
        if self.use_ra:
            self.attn_refview = Attention(
                query_dim=self.dim,
                heads=self.num_attention_heads,
                dim_head=self.attention_head_dim,
                dropout=self.dropout,
                bias=self.attention_bias,
                cross_attention_dim=None,
                upcast_attention=self.attn1.upcast_attention,
                out_bias=True,
            )

        self._initialize_attn_weights()

    def _initialize_attn_weights(self):

        if self.use_ma:
            self.attn_multiview.load_state_dict(self.attn1.state_dict()) 
            with torch.no_grad():
                for layer in self.attn_multiview.to_out:
                    for param in layer.parameters():
                        param.zero_()
        if self.use_ra:
            self.attn_refview.load_state_dict(self.attn1.state_dict()) 
            with torch.no_grad():
                for layer in self.attn_refview.to_out:
                    for param in layer.parameters():
                        param.zero_()

        if self.use_ipa:
            self.attn2.to_k_ip.load_state_dict(self.attn2.to_k.state_dict()) 
            self.attn2.to_v_ip.load_state_dict(self.attn2.to_v.state_dict()) 

    def __getattr__(self, name: str):
        try:
            return super().__getattr__(name)
        except AttributeError:
            return getattr(self.transformer, name)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
    ) -> torch.Tensor:

        # Notice that normalization is always applied before the real computation in the following blocks.
        # 0. Self-Attention
        batch_size = hidden_states.shape[0]

        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
        num_in_batch = cross_attention_kwargs.pop('num_in_batch', 1)
        mode = cross_attention_kwargs.pop('mode', None)
        condition_embed_dict = cross_attention_kwargs.pop("condition_embed_dict", None)
        ip_hidden_states = cross_attention_kwargs.pop("ip_hidden_states", None)
        position_attn_mask = cross_attention_kwargs.pop("position_attn_mask", None)
        position_voxel_indices = cross_attention_kwargs.pop("position_voxel_indices", None)

        if self.norm_type == "ada_norm":
            norm_hidden_states = self.norm1(hidden_states, timestep)
        elif self.norm_type == "ada_norm_zero":
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
        elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
            norm_hidden_states = self.norm1(hidden_states)
        elif self.norm_type == "ada_norm_continuous":
            norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
        elif self.norm_type == "ada_norm_single":
            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
                self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
            ).chunk(6, dim=1)
            norm_hidden_states = self.norm1(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
        else:
            raise ValueError("Incorrect norm used")
            
        if self.pos_embed is not None:
            norm_hidden_states = self.pos_embed(norm_hidden_states)
            
        # 1. Prepare GLIGEN inputs
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
        gligen_kwargs = cross_attention_kwargs.pop("gligen", None)

        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
        if self.norm_type == "ada_norm_zero":
            attn_output = gate_msa.unsqueeze(1) * attn_output
        elif self.norm_type == "ada_norm_single":
            attn_output = gate_msa * attn_output

        hidden_states = attn_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)
        
        # 1.2 Reference Attention
        if 'w' in mode:
            condition_embed_dict[self.layer_name] = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch) # B, (N L), C

        if 'r' in mode:
            condition_embed = condition_embed_dict[self.layer_name].unsqueeze(1).repeat(1,num_in_batch,1,1) # B N L C
            condition_embed = rearrange(condition_embed, 'b n l c -> (b n) l c')

            attn_output = self.attn_refview(
                norm_hidden_states,
                encoder_hidden_states=condition_embed,
                attention_mask=None,
                **cross_attention_kwargs
            )

            hidden_states = attn_output + hidden_states
            if hidden_states.ndim == 4:
                hidden_states = hidden_states.squeeze(1)
            

        # 1.3 Multiview Attention
        if num_in_batch > 1 and self.use_ma:
            multivew_hidden_states = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch)
            position_mask = None
            if position_attn_mask is not None:
                if multivew_hidden_states.shape[1] in position_attn_mask:
                    position_mask = position_attn_mask[multivew_hidden_states.shape[1]]
            position_indices = None
            if position_voxel_indices is not None:
                if multivew_hidden_states.shape[1] in position_voxel_indices:
                    position_indices = position_voxel_indices[multivew_hidden_states.shape[1]]

            attn_output = self.attn_multiview(
                multivew_hidden_states,
                encoder_hidden_states=multivew_hidden_states,
                attention_mask=position_mask,
                position_indices=position_indices,
                **cross_attention_kwargs
            )

            attn_output = rearrange(attn_output, 'b (n l) c -> (b n) l c', n=num_in_batch)

            hidden_states = attn_output + hidden_states
            if hidden_states.ndim == 4:
                hidden_states = hidden_states.squeeze(1)

        # 1.2 GLIGEN Control
        if gligen_kwargs is not None:
            hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])

        # 3. Cross-Attention
        if self.attn2 is not None:
            if self.norm_type == "ada_norm":
                norm_hidden_states = self.norm2(hidden_states, timestep)
            elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
                norm_hidden_states = self.norm2(hidden_states)
            elif self.norm_type == "ada_norm_single":
                # For PixArt norm2 isn't applied here:
                # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
                norm_hidden_states = hidden_states
            elif self.norm_type == "ada_norm_continuous":
                norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
            else:
                raise ValueError("Incorrect norm")

            if self.pos_embed is not None and self.norm_type != "ada_norm_single":
                norm_hidden_states = self.pos_embed(norm_hidden_states)

            if ip_hidden_states is not None:
                ip_hidden_states = ip_hidden_states.unsqueeze(1).repeat(1,num_in_batch,1,1) # B N L C
                ip_hidden_states = rearrange(ip_hidden_states, 'b n l c -> (b n) l c')

            if self.use_ipa:
                attn_output = self.attn2(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    ip_hidden_states=ip_hidden_states,
                    attention_mask=encoder_attention_mask,
                    **cross_attention_kwargs,
                )
            else:
                attn_output = self.attn2(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=encoder_attention_mask,
                    **cross_attention_kwargs,
                )

            hidden_states = attn_output + hidden_states

        # 4. Feed-forward
        # i2vgen doesn't have this norm 🤷‍♂️
        if self.norm_type == "ada_norm_continuous":
            norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
        elif not self.norm_type == "ada_norm_single":
            norm_hidden_states = self.norm3(hidden_states)

        if self.norm_type == "ada_norm_zero":
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

        if self.norm_type == "ada_norm_single":
            norm_hidden_states = self.norm2(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
        else:
            ff_output = self.ff(norm_hidden_states)

        if self.norm_type == "ada_norm_zero":
            ff_output = gate_mlp.unsqueeze(1) * ff_output
        elif self.norm_type == "ada_norm_single":
            ff_output = gate_mlp * ff_output

        hidden_states = ff_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        return hidden_states

@torch.no_grad()
def compute_voxel_grid_mask(position, grid_resolution=8):

    position = position.half()    
    B,N,_,H,W = position.shape
    assert H%grid_resolution==0 and W%grid_resolution==0

    valid_mask = (position != 1).all(dim=2, keepdim=True)
    valid_mask = valid_mask.expand_as(position)
    position[valid_mask==False] = 0

    
    position = rearrange(position, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution)
    valid_mask = rearrange(valid_mask, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution)

    grid_position = position.sum(dim=(-2, -1))
    count_masked = valid_mask.sum(dim=(-2, -1))

    grid_position = grid_position / count_masked.clamp(min=1)
    grid_position[count_masked<5] = 0

    grid_position = grid_position.permute(0,1,4,2,3)
    grid_position = rearrange(grid_position, 'b n c h w -> b n (h w) c')

    grid_position_expanded_1 = grid_position.unsqueeze(2).unsqueeze(4)  # 形状变为 B, N, 1, L, 1, 3
    grid_position_expanded_2 = grid_position.unsqueeze(1).unsqueeze(3)  # 形状变为 B, 1, N, 1, L, 3

    # 计算欧氏距离
    distances = torch.norm(grid_position_expanded_1 - grid_position_expanded_2, dim=-1)  # 形状为 B, N, N, L, L

    weights = distances
    grid_distance = 1.73/grid_resolution
    
    #weights = weights*-32
    #weights = weights.clamp(min=-10000.0)
    
    weights = weights< grid_distance

    return weights
    
def compute_multi_resolution_mask(position_maps, grid_resolutions=[32, 16, 8]):
    position_attn_mask = {}
    with torch.no_grad():
        for grid_resolution in grid_resolutions:
            position_mask = compute_voxel_grid_mask(position_maps, grid_resolution)
            position_mask = rearrange(position_mask, 'b ni nj li lj -> b (ni li) (nj lj)')
            position_attn_mask[position_mask.shape[1]] = position_mask
    return position_attn_mask

@torch.no_grad()
def compute_discrete_voxel_indice(position, grid_resolution=8, voxel_resolution=128):

    position = position.half()    
    B,N,_,H,W = position.shape
    assert H%grid_resolution==0 and W%grid_resolution==0

    valid_mask = (position != 1).all(dim=2, keepdim=True)
    valid_mask = valid_mask.expand_as(position)
    position[valid_mask==False] = 0
    
    position = rearrange(position, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution)
    valid_mask = rearrange(valid_mask, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution)

    grid_position = position.sum(dim=(-2, -1))
    count_masked = valid_mask.sum(dim=(-2, -1))

    grid_position = grid_position / count_masked.clamp(min=1)
    grid_position[count_masked<5] = 0

    grid_position = grid_position.permute(0,1,4,2,3).clamp(0, 1) # B N C H W
    voxel_indices = grid_position * (voxel_resolution - 1)
    voxel_indices = torch.round(voxel_indices).long()
    return voxel_indices
    
def compute_multi_resolution_discrete_voxel_indice(position_maps, grid_resolutions=[64, 32, 16, 8], voxel_resolutions=[512, 256, 128, 64]):
    voxel_indices = {}
    with torch.no_grad():
        for grid_resolution, voxel_resolution in zip(grid_resolutions, voxel_resolutions):
            voxel_indice = compute_discrete_voxel_indice(position_maps, grid_resolution, voxel_resolution)
            voxel_indice = rearrange(voxel_indice, 'b n c h w -> b (n h w) c')
            voxel_indices[voxel_indice.shape[1]] = {'voxel_indices':voxel_indice, 'voxel_resolution':voxel_resolution}
    return voxel_indices   
    
class ImageProjModel(torch.nn.Module):
    """Projection Model"""

    def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
        super().__init__()

        self.generator = None
        self.cross_attention_dim = cross_attention_dim
        self.clip_extra_context_tokens = clip_extra_context_tokens
        self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
        self.norm = torch.nn.LayerNorm(cross_attention_dim)

    def forward(self, image_embeds):
        embeds = image_embeds
        clip_extra_context_tokens = self.proj(embeds).reshape(
            -1, self.clip_extra_context_tokens, self.cross_attention_dim
        )
        clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
        return clip_extra_context_tokens
        
class UNet2p5DConditionModel(torch.nn.Module):
    def __init__(self, unet: UNet2DConditionModel) -> None:
        super().__init__()
        self.unet = unet
        self.unet_dual = copy.deepcopy(unet)

        self.init_camera_embedding()
        self.init_attention(self.unet, use_ipa=True, use_ma=True, use_ra=True)
        self.init_attention(self.unet_dual, use_ipa=False, use_ma=False, use_ra=False)
        self.init_condition()

    @staticmethod
    def from_pretrained(pretrained_model_name_or_path, **kwargs):
        torch_dtype = kwargs.pop('torch_dtype', torch.float32)
        config_path = os.path.join(pretrained_model_name_or_path, 'config.json')
        unet_ckpt_path = os.path.join(pretrained_model_name_or_path, 'diffusion_pytorch_model.bin')
        with open(config_path, 'r', encoding='utf-8') as file:
            config = json.load(file)
        unet = UNet2DConditionModel(**config)
        unet = UNet2p5DConditionModel(unet)

        unet.unet.conv_in = torch.nn.Conv2d(
            12,
            unet.unet.conv_in.out_channels,
            kernel_size=unet.unet.conv_in.kernel_size,
            stride=unet.unet.conv_in.stride,
            padding=unet.unet.conv_in.padding,
            dilation=unet.unet.conv_in.dilation,
            groups=unet.unet.conv_in.groups,
            bias=unet.unet.conv_in.bias is not None)
        
        unet_ckpt = torch.load(unet_ckpt_path, map_location='cpu', weights_only=True)
        unet.load_state_dict(unet_ckpt, strict=True)
        unet = unet.to(torch_dtype)
        return unet
        
    def init_condition(self):
        self.unet.learned_text_clip_gen = nn.Parameter(torch.randn(1,77,1024))
        self.unet.learned_text_clip_ref = nn.Parameter(torch.randn(1,77,1024))

        self.unet.image_proj_model = ImageProjModel(
            cross_attention_dim=self.unet.config.cross_attention_dim,
            clip_embeddings_dim=1024,
        )


    def init_camera_embedding(self):
        self.max_num_ref_image = 5
        self.max_num_gen_image = 12*3+4*2

        time_embed_dim = 1280
        self.unet.class_embedding = nn.Embedding(self.max_num_ref_image+self.max_num_gen_image, time_embed_dim)
        # 将嵌入层的权重初始化为全零
        nn.init.zeros_(self.unet.class_embedding.weight)
    
    def init_attention(self, unet, use_ipa=True, use_ma=True, use_ra=True):

        for down_block_i, down_block in enumerate(unet.down_blocks):
            if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention:
                for attn_i, attn in enumerate(down_block.attentions):
                    for transformer_i, transformer in enumerate(attn.transformer_blocks):
                        if isinstance(transformer, BasicTransformerBlock):
                            attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'down_{down_block_i}_{attn_i}_{transformer_i}',use_ipa,use_ma,use_ra)

        if hasattr(unet.mid_block, "has_cross_attention") and unet.mid_block.has_cross_attention:
            for attn_i, attn in enumerate(unet.mid_block.attentions):
                for transformer_i, transformer in enumerate(attn.transformer_blocks):
                    if isinstance(transformer, BasicTransformerBlock):
                        attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'mid_{attn_i}_{transformer_i}',use_ipa,use_ma,use_ra)

        for up_block_i, up_block in enumerate(unet.up_blocks):
            if hasattr(up_block, "has_cross_attention") and up_block.has_cross_attention:
                for attn_i, attn in enumerate(up_block.attentions):
                    for transformer_i, transformer in enumerate(attn.transformer_blocks):
                        if isinstance(transformer, BasicTransformerBlock):
                            attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'up_{up_block_i}_{attn_i}_{transformer_i}',use_ipa,use_ma,use_ra)


    def __getattr__(self, name: str):
        try:
            return super().__getattr__(name)
        except AttributeError:
            return getattr(self.unet, name)
        
    def forward(
        self, sample, timestep, encoder_hidden_states, class_labels=None,
        *args, cross_attention_kwargs=None, down_intrablock_additional_residuals=None,
        down_block_res_samples=None, mid_block_res_sample=None,
        **cached_condition,
    ):
        B, N_gen, _, H, W = sample.shape
        camera_info_gen = cached_condition['camera_info_gen'] + self.max_num_ref_image
        camera_info_gen = rearrange(camera_info_gen, 'b n -> (b n)')
        sample = [sample]
        
        if 'normal_imgs' in cached_condition:
            sample.append(cached_condition["normal_imgs"])
        if 'position_imgs' in cached_condition:
            sample.append(cached_condition["position_imgs"])

        sample = torch.cat(sample, dim=2)
        sample = rearrange(sample, 'b n c h w -> (b n) c h w')

        encoder_hidden_states_gen = encoder_hidden_states.unsqueeze(1).repeat(1, N_gen, 1, 1)
        encoder_hidden_states_gen = rearrange(encoder_hidden_states_gen, 'b n l c -> (b n) l c')
        
        
        use_position_mask = False
        use_position_rope = True

        position_attn_mask = None
        if use_position_mask:
            if 'position_attn_mask' in cached_condition:
                position_attn_mask = cached_condition['position_attn_mask']
            else:
                if 'position_maps' in cached_condition:
                    position_attn_mask = compute_multi_resolution_mask(cached_condition['position_maps'])
        
        position_voxel_indices = None
        if use_position_rope:
            if 'position_voxel_indices' in cached_condition:
                position_voxel_indices = cached_condition['position_voxel_indices']
            else:
                if 'position_maps' in cached_condition:
                    position_voxel_indices = compute_multi_resolution_discrete_voxel_indice(cached_condition['position_maps'])

        if 'ip_hidden_states' in cached_condition:
            ip_hidden_states = cached_condition['ip_hidden_states']
        else:
            if 'clip_embeds' in cached_condition:
                ip_hidden_states = self.image_proj_model(cached_condition['clip_embeds'])
            else:
                ip_hidden_states = None
            cached_condition['ip_hidden_states'] = ip_hidden_states

        if 'condition_embed_dict' in cached_condition:
            condition_embed_dict = cached_condition['condition_embed_dict']
        else:
            condition_embed_dict = {}
            ref_latents = cached_condition['ref_latents']
            N_ref = ref_latents.shape[1]
            camera_info_ref = cached_condition['camera_info_ref']
            camera_info_ref = rearrange(camera_info_ref, 'b n -> (b n)')
            
            #ref_latents = [ref_latents]
            #if 'normal_imgs' in cached_condition:
            #    ref_latents.append(torch.zeros_like(ref_latents[0]))
            #if 'position_imgs' in cached_condition:
            #    ref_latents.append(torch.zeros_like(ref_latents[0]))
            #ref_latents = torch.cat(ref_latents, dim=2)
            
            ref_latents = rearrange(ref_latents, 'b n c h w -> (b n) c h w')

            encoder_hidden_states_ref = self.learned_text_clip_ref.unsqueeze(1).repeat(B, N_ref, 1, 1)
            encoder_hidden_states_ref = rearrange(encoder_hidden_states_ref, 'b n l c -> (b n) l c')

            noisy_ref_latents = ref_latents
            timestep_ref = 0
            '''
            if timestep.dim()>0:
                timestep_ref = rearrange(timestep, '(b n) -> b n', b=B)[:,:1].repeat(1, N_ref)
                timestep_ref = rearrange(timestep_ref, 'b n -> (b n)')
            else:
                timestep_ref = timestep
            noise = torch.randn_like(noisy_ref_latents[:,:4,...])
            if self.training:
                noisy_ref_latents[:,:4,...] = self.train_sched.add_noise(noisy_ref_latents[:,:4,...], noise, timestep_ref)
                noisy_ref_latents[:,:4,...] = self.train_sched.scale_model_input(noisy_ref_latents[:,:4,...], timestep_ref)
            else:
                noisy_ref_latents[:,:4,...] = self.val_sched.add_noise(noisy_ref_latents[:,:4,...], noise, timestep_ref.reshape(-1))
                noisy_ref_latents[:,:4,...] = self.val_sched.scale_model_input(noisy_ref_latents[:,:4,...], timestep_ref.reshape(-1))
            '''
            self.unet_dual(
                noisy_ref_latents, timestep_ref,
                encoder_hidden_states=encoder_hidden_states_ref,
                #class_labels=camera_info_ref,
                # **kwargs
                return_dict=False,
                cross_attention_kwargs={
                    'mode':'w', 'num_in_batch':N_ref, 
                    'condition_embed_dict':condition_embed_dict},
            )
            cached_condition['condition_embed_dict'] = condition_embed_dict

        return self.unet(
            sample, timestep,
            encoder_hidden_states_gen, *args,
            class_labels=camera_info_gen,
            down_intrablock_additional_residuals=[
                sample.to(dtype=self.unet.dtype) for sample in down_intrablock_additional_residuals
            ] if down_intrablock_additional_residuals is not None else None,
            down_block_additional_residuals=[
                sample.to(dtype=self.unet.dtype) for sample in down_block_res_samples
            ] if down_block_res_samples is not None else None,
            mid_block_additional_residual=(
                mid_block_res_sample.to(dtype=self.unet.dtype)
                if mid_block_res_sample is not None else None
            ),
            return_dict=False,
            cross_attention_kwargs={
                'mode':'r', 'num_in_batch':N_gen, 
                'ip_hidden_states':ip_hidden_states,
                'condition_embed_dict':condition_embed_dict, 
                'position_attn_mask':position_attn_mask, 
                'position_voxel_indices':position_voxel_indices
            },
        )