File size: 41,188 Bytes
8878bbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
# Open Source Model Licensed under the Apache License Version 2.0
# and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import copy
import json
import os
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models import UNet2DConditionModel
from diffusers.models.attention_processor import Attention
from diffusers.models.transformers.transformer_2d import BasicTransformerBlock
from einops import rearrange
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
# "feed_forward_chunk_size" can be used to save memory
if hidden_states.shape[chunk_dim] % chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
ff_output = torch.cat(
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
dim=chunk_dim,
)
return ff_output
class PoseRoPEAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def get_1d_rotary_pos_embed(
self,
dim: int,
pos: torch.Tensor,
theta: float = 10000.0,
linear_factor=1.0,
ntk_factor=1.0,
):
assert dim % 2 == 0
theta = theta * ntk_factor
freqs = (
1.0
/ (theta ** (torch.arange(0, dim, 2, dtype=pos.dtype, device=pos.device)[: (dim // 2)] / dim))
/ linear_factor
) # [D/2]
freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2]
# flux, hunyuan-dit, cogvideox
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
return freqs_cos, freqs_sin
def get_3d_rotary_pos_embed(
self,
position,
embed_dim,
voxel_resolution,
theta: int = 10000,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
RoPE for video tokens with 3D structure.
Args:
voxel_resolution (`int`):
The grid size of the spatial positional embedding (height, width).
theta (`float`):
Scaling factor for frequency computation.
Returns:
`torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
"""
assert position.shape[-1]==3
# Compute dimensions for each axis
dim_xy = embed_dim // 8 * 3
dim_z = embed_dim // 8 * 2
# Temporal frequencies
grid = torch.arange(voxel_resolution, dtype=torch.float32, device=position.device)
freqs_xy = self.get_1d_rotary_pos_embed(dim_xy, grid, theta=theta)
freqs_z = self.get_1d_rotary_pos_embed(dim_z, grid, theta=theta)
xy_cos, xy_sin = freqs_xy # both t_cos and t_sin has shape: voxel_resolution, dim_xy
z_cos, z_sin = freqs_z # both w_cos and w_sin has shape: voxel_resolution, dim_z
embed_flattn = position.view(-1, position.shape[-1])
x_cos = xy_cos[embed_flattn[:,0], :]
x_sin = xy_sin[embed_flattn[:,0], :]
y_cos = xy_cos[embed_flattn[:,1], :]
y_sin = xy_sin[embed_flattn[:,1], :]
z_cos = z_cos[embed_flattn[:,2], :]
z_sin = z_sin[embed_flattn[:,2], :]
cos = torch.cat((x_cos, y_cos, z_cos), dim=-1)
sin = torch.cat((x_sin, y_sin, z_sin), dim=-1)
cos = cos.view(*position.shape[:-1], embed_dim)
sin = sin.view(*position.shape[:-1], embed_dim)
return cos, sin
def apply_rotary_emb(
self,
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]]
):
cos, sin = freqs_cis # [S, D]
cos, sin = cos.to(x.device), sin.to(x.device)
cos = cos.unsqueeze(1)
sin = sin.unsqueeze(1)
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_indices: Dict = None,
temb: Optional[torch.Tensor] = None,
*args,
**kwargs,
) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
if position_indices is not None:
if head_dim in position_indices:
image_rotary_emb = position_indices[head_dim]
else:
image_rotary_emb = self.get_3d_rotary_pos_embed(position_indices['voxel_indices'], head_dim, voxel_resolution=position_indices['voxel_resolution'])
position_indices[head_dim] = image_rotary_emb
query = self.apply_rotary_emb(query, image_rotary_emb)
key = self.apply_rotary_emb(key, image_rotary_emb)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class IPAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(self, scale=0.0):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.scale = scale
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
ip_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
*args,
**kwargs,
) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# for ip adapter
if ip_hidden_states is not None:
ip_key = attn.to_k_ip(ip_hidden_states)
ip_value = attn.to_v_ip(ip_hidden_states)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
hidden_states = hidden_states + self.scale * ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class Basic2p5DTransformerBlock(torch.nn.Module):
def __init__(self, transformer: BasicTransformerBlock, layer_name, use_ipa=True, use_ma=True, use_ra=True) -> None:
super().__init__()
self.transformer = transformer
self.layer_name = layer_name
self.use_ipa = use_ipa
self.use_ma = use_ma
self.use_ra = use_ra
if use_ipa:
self.attn2.set_processor(IPAttnProcessor2_0())
cross_attention_dim = 1024
self.attn2.to_k_ip = nn.Linear(cross_attention_dim, self.dim, bias=False)
self.attn2.to_v_ip = nn.Linear(cross_attention_dim, self.dim, bias=False)
# multiview attn
if self.use_ma:
self.attn_multiview = Attention(
query_dim=self.dim,
heads=self.num_attention_heads,
dim_head=self.attention_head_dim,
dropout=self.dropout,
bias=self.attention_bias,
cross_attention_dim=None,
upcast_attention=self.attn1.upcast_attention,
out_bias=True,
processor=PoseRoPEAttnProcessor2_0(),
)
# ref attn
if self.use_ra:
self.attn_refview = Attention(
query_dim=self.dim,
heads=self.num_attention_heads,
dim_head=self.attention_head_dim,
dropout=self.dropout,
bias=self.attention_bias,
cross_attention_dim=None,
upcast_attention=self.attn1.upcast_attention,
out_bias=True,
)
self._initialize_attn_weights()
def _initialize_attn_weights(self):
if self.use_ma:
self.attn_multiview.load_state_dict(self.attn1.state_dict())
with torch.no_grad():
for layer in self.attn_multiview.to_out:
for param in layer.parameters():
param.zero_()
if self.use_ra:
self.attn_refview.load_state_dict(self.attn1.state_dict())
with torch.no_grad():
for layer in self.attn_refview.to_out:
for param in layer.parameters():
param.zero_()
if self.use_ipa:
self.attn2.to_k_ip.load_state_dict(self.attn2.to_k.state_dict())
self.attn2.to_v_ip.load_state_dict(self.attn2.to_v.state_dict())
def __getattr__(self, name: str):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.transformer, name)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.Tensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
batch_size = hidden_states.shape[0]
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
num_in_batch = cross_attention_kwargs.pop('num_in_batch', 1)
mode = cross_attention_kwargs.pop('mode', None)
condition_embed_dict = cross_attention_kwargs.pop("condition_embed_dict", None)
ip_hidden_states = cross_attention_kwargs.pop("ip_hidden_states", None)
position_attn_mask = cross_attention_kwargs.pop("position_attn_mask", None)
position_voxel_indices = cross_attention_kwargs.pop("position_voxel_indices", None)
if self.norm_type == "ada_norm":
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.norm_type == "ada_norm_zero":
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
norm_hidden_states = self.norm1(hidden_states)
elif self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
elif self.norm_type == "ada_norm_single":
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
else:
raise ValueError("Incorrect norm used")
if self.pos_embed is not None:
norm_hidden_states = self.pos_embed(norm_hidden_states)
# 1. Prepare GLIGEN inputs
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.norm_type == "ada_norm_zero":
attn_output = gate_msa.unsqueeze(1) * attn_output
elif self.norm_type == "ada_norm_single":
attn_output = gate_msa * attn_output
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 1.2 Reference Attention
if 'w' in mode:
condition_embed_dict[self.layer_name] = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch) # B, (N L), C
if 'r' in mode:
condition_embed = condition_embed_dict[self.layer_name].unsqueeze(1).repeat(1,num_in_batch,1,1) # B N L C
condition_embed = rearrange(condition_embed, 'b n l c -> (b n) l c')
attn_output = self.attn_refview(
norm_hidden_states,
encoder_hidden_states=condition_embed,
attention_mask=None,
**cross_attention_kwargs
)
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 1.3 Multiview Attention
if num_in_batch > 1 and self.use_ma:
multivew_hidden_states = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch)
position_mask = None
if position_attn_mask is not None:
if multivew_hidden_states.shape[1] in position_attn_mask:
position_mask = position_attn_mask[multivew_hidden_states.shape[1]]
position_indices = None
if position_voxel_indices is not None:
if multivew_hidden_states.shape[1] in position_voxel_indices:
position_indices = position_voxel_indices[multivew_hidden_states.shape[1]]
attn_output = self.attn_multiview(
multivew_hidden_states,
encoder_hidden_states=multivew_hidden_states,
attention_mask=position_mask,
position_indices=position_indices,
**cross_attention_kwargs
)
attn_output = rearrange(attn_output, 'b (n l) c -> (b n) l c', n=num_in_batch)
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 1.2 GLIGEN Control
if gligen_kwargs is not None:
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
# 3. Cross-Attention
if self.attn2 is not None:
if self.norm_type == "ada_norm":
norm_hidden_states = self.norm2(hidden_states, timestep)
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
norm_hidden_states = self.norm2(hidden_states)
elif self.norm_type == "ada_norm_single":
# For PixArt norm2 isn't applied here:
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
norm_hidden_states = hidden_states
elif self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
else:
raise ValueError("Incorrect norm")
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
norm_hidden_states = self.pos_embed(norm_hidden_states)
if ip_hidden_states is not None:
ip_hidden_states = ip_hidden_states.unsqueeze(1).repeat(1,num_in_batch,1,1) # B N L C
ip_hidden_states = rearrange(ip_hidden_states, 'b n l c -> (b n) l c')
if self.use_ipa:
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
ip_hidden_states=ip_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
else:
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 4. Feed-forward
# i2vgen doesn't have this norm 🤷♂️
if self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
elif not self.norm_type == "ada_norm_single":
norm_hidden_states = self.norm3(hidden_states)
if self.norm_type == "ada_norm_zero":
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self.norm_type == "ada_norm_single":
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
else:
ff_output = self.ff(norm_hidden_states)
if self.norm_type == "ada_norm_zero":
ff_output = gate_mlp.unsqueeze(1) * ff_output
elif self.norm_type == "ada_norm_single":
ff_output = gate_mlp * ff_output
hidden_states = ff_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
return hidden_states
@torch.no_grad()
def compute_voxel_grid_mask(position, grid_resolution=8):
position = position.half()
B,N,_,H,W = position.shape
assert H%grid_resolution==0 and W%grid_resolution==0
valid_mask = (position != 1).all(dim=2, keepdim=True)
valid_mask = valid_mask.expand_as(position)
position[valid_mask==False] = 0
position = rearrange(position, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution)
valid_mask = rearrange(valid_mask, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution)
grid_position = position.sum(dim=(-2, -1))
count_masked = valid_mask.sum(dim=(-2, -1))
grid_position = grid_position / count_masked.clamp(min=1)
grid_position[count_masked<5] = 0
grid_position = grid_position.permute(0,1,4,2,3)
grid_position = rearrange(grid_position, 'b n c h w -> b n (h w) c')
grid_position_expanded_1 = grid_position.unsqueeze(2).unsqueeze(4) # 形状变为 B, N, 1, L, 1, 3
grid_position_expanded_2 = grid_position.unsqueeze(1).unsqueeze(3) # 形状变为 B, 1, N, 1, L, 3
# 计算欧氏距离
distances = torch.norm(grid_position_expanded_1 - grid_position_expanded_2, dim=-1) # 形状为 B, N, N, L, L
weights = distances
grid_distance = 1.73/grid_resolution
#weights = weights*-32
#weights = weights.clamp(min=-10000.0)
weights = weights< grid_distance
return weights
def compute_multi_resolution_mask(position_maps, grid_resolutions=[32, 16, 8]):
position_attn_mask = {}
with torch.no_grad():
for grid_resolution in grid_resolutions:
position_mask = compute_voxel_grid_mask(position_maps, grid_resolution)
position_mask = rearrange(position_mask, 'b ni nj li lj -> b (ni li) (nj lj)')
position_attn_mask[position_mask.shape[1]] = position_mask
return position_attn_mask
@torch.no_grad()
def compute_discrete_voxel_indice(position, grid_resolution=8, voxel_resolution=128):
position = position.half()
B,N,_,H,W = position.shape
assert H%grid_resolution==0 and W%grid_resolution==0
valid_mask = (position != 1).all(dim=2, keepdim=True)
valid_mask = valid_mask.expand_as(position)
position[valid_mask==False] = 0
position = rearrange(position, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution)
valid_mask = rearrange(valid_mask, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution)
grid_position = position.sum(dim=(-2, -1))
count_masked = valid_mask.sum(dim=(-2, -1))
grid_position = grid_position / count_masked.clamp(min=1)
grid_position[count_masked<5] = 0
grid_position = grid_position.permute(0,1,4,2,3).clamp(0, 1) # B N C H W
voxel_indices = grid_position * (voxel_resolution - 1)
voxel_indices = torch.round(voxel_indices).long()
return voxel_indices
def compute_multi_resolution_discrete_voxel_indice(position_maps, grid_resolutions=[64, 32, 16, 8], voxel_resolutions=[512, 256, 128, 64]):
voxel_indices = {}
with torch.no_grad():
for grid_resolution, voxel_resolution in zip(grid_resolutions, voxel_resolutions):
voxel_indice = compute_discrete_voxel_indice(position_maps, grid_resolution, voxel_resolution)
voxel_indice = rearrange(voxel_indice, 'b n c h w -> b (n h w) c')
voxel_indices[voxel_indice.shape[1]] = {'voxel_indices':voxel_indice, 'voxel_resolution':voxel_resolution}
return voxel_indices
class ImageProjModel(torch.nn.Module):
"""Projection Model"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.generator = None
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(
-1, self.clip_extra_context_tokens, self.cross_attention_dim
)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
class UNet2p5DConditionModel(torch.nn.Module):
def __init__(self, unet: UNet2DConditionModel) -> None:
super().__init__()
self.unet = unet
self.unet_dual = copy.deepcopy(unet)
self.init_camera_embedding()
self.init_attention(self.unet, use_ipa=True, use_ma=True, use_ra=True)
self.init_attention(self.unet_dual, use_ipa=False, use_ma=False, use_ra=False)
self.init_condition()
@staticmethod
def from_pretrained(pretrained_model_name_or_path, **kwargs):
torch_dtype = kwargs.pop('torch_dtype', torch.float32)
config_path = os.path.join(pretrained_model_name_or_path, 'config.json')
unet_ckpt_path = os.path.join(pretrained_model_name_or_path, 'diffusion_pytorch_model.bin')
with open(config_path, 'r', encoding='utf-8') as file:
config = json.load(file)
unet = UNet2DConditionModel(**config)
unet = UNet2p5DConditionModel(unet)
unet.unet.conv_in = torch.nn.Conv2d(
12,
unet.unet.conv_in.out_channels,
kernel_size=unet.unet.conv_in.kernel_size,
stride=unet.unet.conv_in.stride,
padding=unet.unet.conv_in.padding,
dilation=unet.unet.conv_in.dilation,
groups=unet.unet.conv_in.groups,
bias=unet.unet.conv_in.bias is not None)
unet_ckpt = torch.load(unet_ckpt_path, map_location='cpu', weights_only=True)
unet.load_state_dict(unet_ckpt, strict=True)
unet = unet.to(torch_dtype)
return unet
def init_condition(self):
self.unet.learned_text_clip_gen = nn.Parameter(torch.randn(1,77,1024))
self.unet.learned_text_clip_ref = nn.Parameter(torch.randn(1,77,1024))
self.unet.image_proj_model = ImageProjModel(
cross_attention_dim=self.unet.config.cross_attention_dim,
clip_embeddings_dim=1024,
)
def init_camera_embedding(self):
self.max_num_ref_image = 5
self.max_num_gen_image = 12*3+4*2
time_embed_dim = 1280
self.unet.class_embedding = nn.Embedding(self.max_num_ref_image+self.max_num_gen_image, time_embed_dim)
# 将嵌入层的权重初始化为全零
nn.init.zeros_(self.unet.class_embedding.weight)
def init_attention(self, unet, use_ipa=True, use_ma=True, use_ra=True):
for down_block_i, down_block in enumerate(unet.down_blocks):
if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention:
for attn_i, attn in enumerate(down_block.attentions):
for transformer_i, transformer in enumerate(attn.transformer_blocks):
if isinstance(transformer, BasicTransformerBlock):
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'down_{down_block_i}_{attn_i}_{transformer_i}',use_ipa,use_ma,use_ra)
if hasattr(unet.mid_block, "has_cross_attention") and unet.mid_block.has_cross_attention:
for attn_i, attn in enumerate(unet.mid_block.attentions):
for transformer_i, transformer in enumerate(attn.transformer_blocks):
if isinstance(transformer, BasicTransformerBlock):
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'mid_{attn_i}_{transformer_i}',use_ipa,use_ma,use_ra)
for up_block_i, up_block in enumerate(unet.up_blocks):
if hasattr(up_block, "has_cross_attention") and up_block.has_cross_attention:
for attn_i, attn in enumerate(up_block.attentions):
for transformer_i, transformer in enumerate(attn.transformer_blocks):
if isinstance(transformer, BasicTransformerBlock):
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'up_{up_block_i}_{attn_i}_{transformer_i}',use_ipa,use_ma,use_ra)
def __getattr__(self, name: str):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.unet, name)
def forward(
self, sample, timestep, encoder_hidden_states, class_labels=None,
*args, cross_attention_kwargs=None, down_intrablock_additional_residuals=None,
down_block_res_samples=None, mid_block_res_sample=None,
**cached_condition,
):
B, N_gen, _, H, W = sample.shape
camera_info_gen = cached_condition['camera_info_gen'] + self.max_num_ref_image
camera_info_gen = rearrange(camera_info_gen, 'b n -> (b n)')
sample = [sample]
if 'normal_imgs' in cached_condition:
sample.append(cached_condition["normal_imgs"])
if 'position_imgs' in cached_condition:
sample.append(cached_condition["position_imgs"])
sample = torch.cat(sample, dim=2)
sample = rearrange(sample, 'b n c h w -> (b n) c h w')
encoder_hidden_states_gen = encoder_hidden_states.unsqueeze(1).repeat(1, N_gen, 1, 1)
encoder_hidden_states_gen = rearrange(encoder_hidden_states_gen, 'b n l c -> (b n) l c')
use_position_mask = False
use_position_rope = True
position_attn_mask = None
if use_position_mask:
if 'position_attn_mask' in cached_condition:
position_attn_mask = cached_condition['position_attn_mask']
else:
if 'position_maps' in cached_condition:
position_attn_mask = compute_multi_resolution_mask(cached_condition['position_maps'])
position_voxel_indices = None
if use_position_rope:
if 'position_voxel_indices' in cached_condition:
position_voxel_indices = cached_condition['position_voxel_indices']
else:
if 'position_maps' in cached_condition:
position_voxel_indices = compute_multi_resolution_discrete_voxel_indice(cached_condition['position_maps'])
if 'ip_hidden_states' in cached_condition:
ip_hidden_states = cached_condition['ip_hidden_states']
else:
if 'clip_embeds' in cached_condition:
ip_hidden_states = self.image_proj_model(cached_condition['clip_embeds'])
else:
ip_hidden_states = None
cached_condition['ip_hidden_states'] = ip_hidden_states
if 'condition_embed_dict' in cached_condition:
condition_embed_dict = cached_condition['condition_embed_dict']
else:
condition_embed_dict = {}
ref_latents = cached_condition['ref_latents']
N_ref = ref_latents.shape[1]
camera_info_ref = cached_condition['camera_info_ref']
camera_info_ref = rearrange(camera_info_ref, 'b n -> (b n)')
#ref_latents = [ref_latents]
#if 'normal_imgs' in cached_condition:
# ref_latents.append(torch.zeros_like(ref_latents[0]))
#if 'position_imgs' in cached_condition:
# ref_latents.append(torch.zeros_like(ref_latents[0]))
#ref_latents = torch.cat(ref_latents, dim=2)
ref_latents = rearrange(ref_latents, 'b n c h w -> (b n) c h w')
encoder_hidden_states_ref = self.learned_text_clip_ref.unsqueeze(1).repeat(B, N_ref, 1, 1)
encoder_hidden_states_ref = rearrange(encoder_hidden_states_ref, 'b n l c -> (b n) l c')
noisy_ref_latents = ref_latents
timestep_ref = 0
'''
if timestep.dim()>0:
timestep_ref = rearrange(timestep, '(b n) -> b n', b=B)[:,:1].repeat(1, N_ref)
timestep_ref = rearrange(timestep_ref, 'b n -> (b n)')
else:
timestep_ref = timestep
noise = torch.randn_like(noisy_ref_latents[:,:4,...])
if self.training:
noisy_ref_latents[:,:4,...] = self.train_sched.add_noise(noisy_ref_latents[:,:4,...], noise, timestep_ref)
noisy_ref_latents[:,:4,...] = self.train_sched.scale_model_input(noisy_ref_latents[:,:4,...], timestep_ref)
else:
noisy_ref_latents[:,:4,...] = self.val_sched.add_noise(noisy_ref_latents[:,:4,...], noise, timestep_ref.reshape(-1))
noisy_ref_latents[:,:4,...] = self.val_sched.scale_model_input(noisy_ref_latents[:,:4,...], timestep_ref.reshape(-1))
'''
self.unet_dual(
noisy_ref_latents, timestep_ref,
encoder_hidden_states=encoder_hidden_states_ref,
#class_labels=camera_info_ref,
# **kwargs
return_dict=False,
cross_attention_kwargs={
'mode':'w', 'num_in_batch':N_ref,
'condition_embed_dict':condition_embed_dict},
)
cached_condition['condition_embed_dict'] = condition_embed_dict
return self.unet(
sample, timestep,
encoder_hidden_states_gen, *args,
class_labels=camera_info_gen,
down_intrablock_additional_residuals=[
sample.to(dtype=self.unet.dtype) for sample in down_intrablock_additional_residuals
] if down_intrablock_additional_residuals is not None else None,
down_block_additional_residuals=[
sample.to(dtype=self.unet.dtype) for sample in down_block_res_samples
] if down_block_res_samples is not None else None,
mid_block_additional_residual=(
mid_block_res_sample.to(dtype=self.unet.dtype)
if mid_block_res_sample is not None else None
),
return_dict=False,
cross_attention_kwargs={
'mode':'r', 'num_in_batch':N_gen,
'ip_hidden_states':ip_hidden_states,
'condition_embed_dict':condition_embed_dict,
'position_attn_mask':position_attn_mask,
'position_voxel_indices':position_voxel_indices
},
)
|