See axolotl config
axolotl version: 0.10.0.dev0
base_model: meta-llama/Llama-3.2-1B-Instruct
# Automatically upload checkpoint and final model to HF
hub_model_id: syvai/reasoning-gen-1b
datasets:
- path: syvai/reasoning-gen
type: chat_template
dataset_prepared_path: last_run_prepared
val_set_size: 0.02
output_dir: ./outputs/out
sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true
wandb_project: reasoning-gen
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
bf16: auto
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_steps: 100
evals_per_epoch: 2
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
reasoning-gen-1b
This model is a fine-tuned version of meta-llama/Llama-3.2-1B-Instruct on the syvai/reasoning-gen dataset. It achieves the following results on the evaluation set:
- Loss: 0.9280
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.2977 | 0.0001 | 1 | 1.3637 |
1.0656 | 0.5000 | 5243 | 0.9280 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support