paraphrase-MiniLM-L3-v2_immig

This SetFit model was trained on 48 title-abstracts samples (24 per class) to differeniate between published studies related to immigration/migration research and those that are not.

Evaluation

Metrics

Label Accuracy Precision Recall F1
all 0.9812 0.9934 0.9868 0.9901

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

model = SetFitModel.from_pretrained("mmarbach/paraphrase-MiniLM-L3-v2_immig")
preds = model("TITLE: ...  ABSTRACT: ....")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 97 155.6458 262
Label Training Sample Count
immigration_topic 24
other_topic 24

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0133 1 0.288 -
0.6667 50 0.1935 -
1.0 75 - 0.0980
1.3333 100 0.0472 -
2.0 150 0.0118 0.0767
2.6667 200 0.0057 -
3.0 225 - 0.0719
3.3333 250 0.0047 -
4.0 300 0.0039 0.0718

Framework Versions

  • Python: 3.12.11
  • SetFit: 1.1.2
  • Sentence Transformers: 5.0.0
  • Transformers: 4.53.0
  • PyTorch: 2.7.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.2

Downloads last month
21
Safetensors
Model size
17.4M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for sumtxt/paraphrase-MiniLM-L3-v2_immig

Finetuned
(25)
this model

Evaluation results