worldmem / datasets /video /minecraft_video_dataset.py
xizaoqu
init
27ca8b3
raw
history blame
9.89 kB
import os
import io
import tarfile
import numpy as np
import torch
from typing import Sequence, Mapping
from omegaconf import DictConfig
from pytorchvideo.data.encoded_video import EncodedVideo
import random
from .base_video_dataset import BaseVideoDataset
ACTION_KEYS = [
"inventory",
"ESC",
"hotbar.1",
"hotbar.2",
"hotbar.3",
"hotbar.4",
"hotbar.5",
"hotbar.6",
"hotbar.7",
"hotbar.8",
"hotbar.9",
"forward",
"back",
"left",
"right",
"cameraY",
"cameraX",
"jump",
"sneak",
"sprint",
"swapHands",
"attack",
"use",
"pickItem",
"drop",
]
def convert_action_space(actions):
vec_25 = torch.zeros(len(actions), len(ACTION_KEYS))
vec_25[actions[:,0]==1, 11] = 1
vec_25[actions[:,0]==2, 12] = 1
vec_25[actions[:,4]==11, 16] = -1
vec_25[actions[:,4]==13, 16] = 1
vec_25[actions[:,3]==11, 15] = -1
vec_25[actions[:,3]==13, 15] = 1
vec_25[actions[:,5]==6, 24] = 1
vec_25[actions[:,5]==1, 24] = 1
vec_25[actions[:,1]==1, 13] = 1
vec_25[actions[:,1]==2, 14] = 1
vec_25[actions[:,7]==1, 2] = 1
return vec_25
# Dataset class
class MinecraftVideoDataset(BaseVideoDataset):
"""
Minecraft video dataset for training and validation.
Args:
cfg (DictConfig): Configuration object.
split (str): Dataset split ("training" or "validation").
"""
def __init__(self, cfg: DictConfig, split: str = "training"):
if split == "test":
split = "validation"
super().__init__(cfg, split)
self.n_frames = cfg.n_frames_valid if split == "validation" and hasattr(cfg, "n_frames_valid") else cfg.n_frames
self.use_plucker = cfg.use_plucker
self.condition_similar_length = cfg.condition_similar_length
self.customized_validation = cfg.customized_validation
self.angle_range = cfg.angle_range
self.pos_range = cfg.pos_range
self.add_frame_timestep_embedder = cfg.add_frame_timestep_embedder
self.training_dropout = 0.1
self.sample_more_place = getattr(cfg, "sample_more_place", False)
self.within_context = getattr(cfg, "within_context", False)
self.sample_more_event = getattr(cfg, "sample_more_event", False)
self.causal_frame = getattr(cfg, "causal_frame", False)
def get_data_paths(self, split: str):
"""
Retrieve all video file paths for the given split.
Args:
split (str): Dataset split ("training" or "validation").
Returns:
List[Path]: List of video file paths.
"""
data_dir = self.save_dir / split
paths = sorted(list(data_dir.glob("**/*.mp4")), key=lambda x: x.name)
if not paths:
sub_dirs = os.listdir(data_dir)
for sub_dir in sub_dirs:
sub_path = data_dir / sub_dir
paths += sorted(list(sub_path.glob("**/*.mp4")), key=lambda x: x.name)
return paths
def download_dataset(self):
pass
def __getitem__(self, idx: int):
"""
Retrieve a single data sample by index.
Args:
idx (int): Index of the data sample.
Returns:
Tuple[torch.Tensor, torch.Tensor, np.ndarray, np.ndarray]: Video, actions, poses, and timesteps.
"""
max_retries = 1000
for _ in range(max_retries):
try:
return self.load_data(idx)
except Exception as e:
print(f"Retrying due to error: {e}")
idx = (idx + 1) % len(self)
def load_data(self, idx):
idx = self.idx_remap[idx]
file_idx, frame_idx = self.split_idx(idx)
action_path = self.data_paths[file_idx]
video_path = self.data_paths[file_idx]
action_path = video_path.with_suffix(".npz")
actions_pool = np.load(action_path)['actions']
poses_pool = np.load(action_path)['poses']
poses_pool[0,1] = poses_pool[1,1] # wrong first in place
assert poses_pool[:,1].max() - poses_pool[:,1].min() < 2, f"wrong~~~~{poses_pool[:,1].max() - poses_pool[:,1].min()}-{video_path}"
if len(poses_pool) < len(actions_pool):
poses_pool = np.pad(poses_pool, ((1, 0), (0, 0)))
actions_pool = convert_action_space(actions_pool)
video_raw = EncodedVideo.from_path(video_path, decode_audio=False)
frame_idx = frame_idx + 100 # avoid first frames # first frame is useless
if self.split == "validation":
frame_idx = 240
if self.sample_more_place and self.split == "training":
if random.uniform(0, 1) > 0.5:
place_mask = (actions_pool[:,24]==1)
place_mask[:100] = 0
valid_indices = np.where(place_mask)[0]
random_index = np.random.choice(valid_indices)
frame_idx = random_index - random.randint(1, self.n_frames-1)
total_frame = video_raw.duration.numerator
fps = 10 # video_raw.duration.denominator
total_frame = total_frame * fps / video_raw.duration.denominator
video = video_raw.get_clip(start_sec=frame_idx/fps, end_sec=(frame_idx+self.n_frames)/fps)["video"]
video = video.permute(1, 2, 3, 0).numpy()
if self.split != "validation" and 'degrees' in np.load(action_path).keys():
degrees = np.load(action_path)['degrees']
actions_pool[:,16] *= degrees
actions = np.copy(actions_pool[frame_idx : frame_idx + self.n_frames])
poses = np.copy(poses_pool[frame_idx : frame_idx + self.n_frames])
pad_len = self.n_frames - len(video)
poses_pool[:,:3] -= poses[:1,:3]
poses_pool[:,-1] = -poses_pool[:,-1]
poses_pool[:,3:] %= 360
poses[:,:3] -= poses[:1,:3] # do not normalize angle
poses[:,-1] = -poses[:,-1]
poses[:,3:] %= 360
assert len(video) >= self.n_frames, f"{video_path}"
if self.split == "training" and self.condition_similar_length>0:
if random.uniform(0, 1) > self.training_dropout:
refer_frame_dis = poses[:,None] - poses_pool[None,:]
refer_frame_dis = np.abs(refer_frame_dis)
refer_frame_dis[...,3:][refer_frame_dis[...,3:] > 180] = 360 - refer_frame_dis[...,3:][refer_frame_dis[...,3:] > 180]
valid_index = ((((refer_frame_dis[..., :3] <= self.pos_range).sum(-1))>=3) & (((refer_frame_dis[..., 3:] <= self.angle_range).sum(-1))>=2) & \
((((refer_frame_dis[..., :3] > 0).sum(-1))>=1) | (((refer_frame_dis[..., 3:] > 0).sum(-1))>=1))
).sum(0)
valid_index[:100] = 0 # mute bad initial scene
if self.add_frame_timestep_embedder and self.causal_frame and (actions_pool[:frame_idx,24]==1).sum() > 0:
valid_index[frame_idx:] = 0
mask = valid_index >= 1
mask[0] = False
candidate_indices = np.argwhere(mask)
mask2 = valid_index >= 0
mask2[0] = False
count = min(self.condition_similar_length, candidate_indices.shape[0])
selected_indices = candidate_indices[np.random.choice(candidate_indices.shape[0], count, replace=True)][:,0]
if count < self.condition_similar_length:
candidate_indices2 = np.argwhere(mask2)
selected_indices2 = candidate_indices2[np.random.choice(candidate_indices2.shape[0], self.condition_similar_length-count, replace=True)][:,0]
selected_indices = np.concatenate([selected_indices, selected_indices2])
if self.sample_more_event:
if random.uniform(0, 1) > 0.3:
valid_idx = torch.nonzero(actions_pool[:frame_idx,24]==1)[:,0]
if len(valid_idx) > self.condition_similar_length //2:
valid_idx = valid_idx[-self.condition_similar_length //2:]
if len(valid_idx) > 0:
selected_indices[-len(valid_idx):] = valid_idx + 4
else:
selected_indices = np.array(list(range(self.condition_similar_length))) * 0 + random.randint(0, frame_idx)
video_pool = []
for si in selected_indices:
video_pool.append(video_raw.get_clip(start_sec=si/fps, end_sec=(si+1)/fps)["video"][:,0].permute(1,2,0))
video_pool = np.stack(video_pool)
video = np.concatenate([video, video_pool])
actions = np.concatenate([actions, actions_pool[selected_indices]])
poses = np.concatenate([poses, poses_pool[selected_indices]])
timestep = np.concatenate([np.array(list(range(frame_idx, frame_idx + self.n_frames))), selected_indices])
else:
timestep = np.array(list(range(self.n_frames)))
video = torch.from_numpy(video / 255.0).float().permute(0, 3, 1, 2).contiguous()
if self.split == "validation" and not self.customized_validation:
num_frame = actions.shape[0]
actions[:] = 0
actions[:,16] = 1
poses[:] = 0
for ff in range(1, num_frame):
poses[ff,4] = poses[ff-1,4] + actions[ff,16] * -15
if self.within_context:
actions[:] = 0
actions[:self.n_frames//2+1,16] = 1
actions[self.n_frames//2+1:,16] = -1
poses[:] = 0
for ff in range(1, num_frame):
poses[ff,4] = poses[ff-1,4] + actions[ff,16] * -15
return (
video[:: self.frame_skip],
actions[:: self.frame_skip],
poses[:: self.frame_skip],
timestep
)