File size: 9,889 Bytes
27ca8b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import io
import tarfile
import numpy as np
import torch
from typing import Sequence, Mapping
from omegaconf import DictConfig
from pytorchvideo.data.encoded_video import EncodedVideo
import random

from .base_video_dataset import BaseVideoDataset




ACTION_KEYS = [
    "inventory",
    "ESC",
    "hotbar.1",
    "hotbar.2",
    "hotbar.3",
    "hotbar.4",
    "hotbar.5",
    "hotbar.6",
    "hotbar.7",
    "hotbar.8",
    "hotbar.9",
    "forward",
    "back",
    "left",
    "right",
    "cameraY",
    "cameraX",
    "jump",
    "sneak",
    "sprint",
    "swapHands",
    "attack",
    "use",
    "pickItem",
    "drop",
]

def convert_action_space(actions):
    vec_25 = torch.zeros(len(actions), len(ACTION_KEYS))
    vec_25[actions[:,0]==1, 11] = 1
    vec_25[actions[:,0]==2, 12] = 1
    vec_25[actions[:,4]==11, 16] = -1
    vec_25[actions[:,4]==13, 16] = 1
    vec_25[actions[:,3]==11, 15] = -1
    vec_25[actions[:,3]==13, 15] = 1
    vec_25[actions[:,5]==6, 24] = 1
    vec_25[actions[:,5]==1, 24] = 1
    vec_25[actions[:,1]==1, 13] = 1
    vec_25[actions[:,1]==2, 14] = 1
    vec_25[actions[:,7]==1, 2] = 1
    return vec_25

# Dataset class
class MinecraftVideoDataset(BaseVideoDataset):
    """
    Minecraft video dataset for training and validation.

    Args:
        cfg (DictConfig): Configuration object.
        split (str): Dataset split ("training" or "validation").
    """
    def __init__(self, cfg: DictConfig, split: str = "training"):
        if split == "test":
            split = "validation"
        super().__init__(cfg, split)
        self.n_frames = cfg.n_frames_valid if split == "validation" and hasattr(cfg, "n_frames_valid") else cfg.n_frames
        self.use_plucker = cfg.use_plucker
        self.condition_similar_length = cfg.condition_similar_length
        self.customized_validation = cfg.customized_validation
        self.angle_range = cfg.angle_range
        self.pos_range = cfg.pos_range
        self.add_frame_timestep_embedder = cfg.add_frame_timestep_embedder
        self.training_dropout = 0.1
        self.sample_more_place = getattr(cfg, "sample_more_place", False)
        self.within_context = getattr(cfg, "within_context", False)
        self.sample_more_event = getattr(cfg, "sample_more_event", False)
        self.causal_frame = getattr(cfg, "causal_frame", False)

    def get_data_paths(self, split: str):
        """
        Retrieve all video file paths for the given split.

        Args:
            split (str): Dataset split ("training" or "validation").

        Returns:
            List[Path]: List of video file paths.
        """
        data_dir = self.save_dir / split
        paths = sorted(list(data_dir.glob("**/*.mp4")), key=lambda x: x.name)
        if not paths:
            sub_dirs = os.listdir(data_dir)
            for sub_dir in sub_dirs:
                sub_path = data_dir / sub_dir
                paths += sorted(list(sub_path.glob("**/*.mp4")), key=lambda x: x.name)
        return paths

    def download_dataset(self):
        pass
    
    def __getitem__(self, idx: int):
        """
        Retrieve a single data sample by index.

        Args:
            idx (int): Index of the data sample.

        Returns:
            Tuple[torch.Tensor, torch.Tensor, np.ndarray, np.ndarray]: Video, actions, poses, and timesteps.
        """
        max_retries = 1000
        for _ in range(max_retries):
            try:
                return self.load_data(idx)
            except Exception as e:
                print(f"Retrying due to error: {e}")
                idx = (idx + 1) % len(self)

    def load_data(self, idx):
        idx = self.idx_remap[idx]
        file_idx, frame_idx = self.split_idx(idx)
        action_path = self.data_paths[file_idx]
        video_path = self.data_paths[file_idx]

        action_path = video_path.with_suffix(".npz")
        actions_pool = np.load(action_path)['actions']
        poses_pool = np.load(action_path)['poses']


        poses_pool[0,1] = poses_pool[1,1] # wrong first in place

        assert poses_pool[:,1].max() - poses_pool[:,1].min() < 2, f"wrong~~~~{poses_pool[:,1].max() - poses_pool[:,1].min()}-{video_path}"


        if len(poses_pool) < len(actions_pool):
            poses_pool = np.pad(poses_pool, ((1, 0), (0, 0)))

        actions_pool = convert_action_space(actions_pool)
        video_raw = EncodedVideo.from_path(video_path, decode_audio=False)

        frame_idx = frame_idx + 100 # avoid first frames # first frame is useless

        if self.split == "validation":
            frame_idx = 240

        if self.sample_more_place and self.split == "training":
            if random.uniform(0, 1) > 0.5:
                place_mask = (actions_pool[:,24]==1)
                place_mask[:100] = 0
                valid_indices = np.where(place_mask)[0]
                random_index = np.random.choice(valid_indices)
                frame_idx = random_index - random.randint(1, self.n_frames-1)

        total_frame = video_raw.duration.numerator
        fps = 10 # video_raw.duration.denominator
        total_frame = total_frame * fps / video_raw.duration.denominator
        video = video_raw.get_clip(start_sec=frame_idx/fps, end_sec=(frame_idx+self.n_frames)/fps)["video"]
        video = video.permute(1, 2, 3, 0).numpy()

        if self.split != "validation" and 'degrees' in np.load(action_path).keys():
            degrees = np.load(action_path)['degrees']
            actions_pool[:,16] *= degrees

        actions = np.copy(actions_pool[frame_idx : frame_idx + self.n_frames])

        poses = np.copy(poses_pool[frame_idx : frame_idx + self.n_frames])
        pad_len = self.n_frames - len(video)
        poses_pool[:,:3] -= poses[:1,:3]
        poses_pool[:,-1] = -poses_pool[:,-1]
        poses_pool[:,3:] %= 360

        poses[:,:3] -= poses[:1,:3] # do not normalize angle
        poses[:,-1] = -poses[:,-1]
        poses[:,3:] %= 360

        assert len(video) >= self.n_frames, f"{video_path}"

        if self.split == "training" and self.condition_similar_length>0:
            if random.uniform(0, 1) > self.training_dropout:
                refer_frame_dis = poses[:,None] - poses_pool[None,:]
                refer_frame_dis = np.abs(refer_frame_dis)
                refer_frame_dis[...,3:][refer_frame_dis[...,3:] > 180] = 360 - refer_frame_dis[...,3:][refer_frame_dis[...,3:] > 180]
                valid_index = ((((refer_frame_dis[..., :3] <= self.pos_range).sum(-1))>=3) & (((refer_frame_dis[..., 3:] <= self.angle_range).sum(-1))>=2) & \
                    ((((refer_frame_dis[..., :3] > 0).sum(-1))>=1) | (((refer_frame_dis[..., 3:] > 0).sum(-1))>=1))
                    ).sum(0)
                valid_index[:100] = 0 # mute bad initial scene

                if self.add_frame_timestep_embedder and self.causal_frame and (actions_pool[:frame_idx,24]==1).sum() > 0:
                    valid_index[frame_idx:] = 0

                mask = valid_index >= 1
                mask[0] = False
                candidate_indices = np.argwhere(mask)

                mask2 = valid_index >= 0
                mask2[0] = False

                count = min(self.condition_similar_length, candidate_indices.shape[0])
                selected_indices = candidate_indices[np.random.choice(candidate_indices.shape[0], count, replace=True)][:,0]

                if count < self.condition_similar_length:
                    candidate_indices2 = np.argwhere(mask2)
                    selected_indices2 = candidate_indices2[np.random.choice(candidate_indices2.shape[0], self.condition_similar_length-count, replace=True)][:,0]
                    selected_indices = np.concatenate([selected_indices, selected_indices2])

                if self.sample_more_event:
                    if random.uniform(0, 1) > 0.3:
                        valid_idx = torch.nonzero(actions_pool[:frame_idx,24]==1)[:,0]
                        if len(valid_idx) > self.condition_similar_length //2:
                            valid_idx = valid_idx[-self.condition_similar_length //2:]

                        if len(valid_idx) > 0:
                            selected_indices[-len(valid_idx):] = valid_idx + 4

            else:
                selected_indices = np.array(list(range(self.condition_similar_length))) * 0 + random.randint(0, frame_idx)

            video_pool = []
            for si in selected_indices:
                video_pool.append(video_raw.get_clip(start_sec=si/fps, end_sec=(si+1)/fps)["video"][:,0].permute(1,2,0))

            video_pool = np.stack(video_pool)
            video = np.concatenate([video, video_pool])
            actions = np.concatenate([actions, actions_pool[selected_indices]])
            poses = np.concatenate([poses, poses_pool[selected_indices]])

            timestep = np.concatenate([np.array(list(range(frame_idx, frame_idx + self.n_frames))), selected_indices])

        else:
            timestep = np.array(list(range(self.n_frames)))

        video = torch.from_numpy(video / 255.0).float().permute(0, 3, 1, 2).contiguous()
        
        if self.split == "validation" and not self.customized_validation:
            num_frame = actions.shape[0]

            actions[:] = 0
            actions[:,16] = 1
            poses[:] = 0
            for ff in range(1, num_frame):
                poses[ff,4] = poses[ff-1,4] + actions[ff,16] * -15

            if self.within_context:
                actions[:] = 0
                actions[:self.n_frames//2+1,16] = 1
                actions[self.n_frames//2+1:,16] = -1
                poses[:] = 0
                for ff in range(1, num_frame):
                    poses[ff,4] = poses[ff-1,4] + actions[ff,16] * -15                

        return (
            video[:: self.frame_skip],
            actions[:: self.frame_skip],
            poses[:: self.frame_skip],
            timestep
        )