|
""" |
|
This repo is forked from [Boyuan Chen](https://boyuan.space/)'s research |
|
template [repo](https://github.com/buoyancy99/research-template). |
|
By its MIT license, you must keep the above sentence in `README.md` |
|
and the `LICENSE` file to credit the author. |
|
""" |
|
|
|
from abc import ABC, abstractmethod |
|
from typing import Optional, Union, Literal, List, Dict |
|
import pathlib |
|
import os |
|
|
|
import hydra |
|
import torch |
|
from lightning.pytorch.strategies.ddp import DDPStrategy |
|
|
|
import lightning.pytorch as pl |
|
from lightning.pytorch.loggers.wandb import WandbLogger |
|
from lightning.pytorch.utilities.types import TRAIN_DATALOADERS |
|
from lightning.pytorch.callbacks import LearningRateMonitor, ModelCheckpoint |
|
from pytorch_lightning.utilities import rank_zero_info |
|
|
|
from omegaconf import DictConfig |
|
|
|
from utils.print_utils import cyan |
|
from utils.distributed_utils import is_rank_zero |
|
from safetensors.torch import load_model |
|
from pathlib import Path |
|
from huggingface_hub import hf_hub_download |
|
|
|
torch.set_float32_matmul_precision("high") |
|
|
|
def load_custom_checkpoint(algo, optimizer, checkpoint_path): |
|
if not checkpoint_path: |
|
rank_zero_info("No checkpoint path provided, skipping checkpoint loading.") |
|
return None |
|
|
|
if not isinstance(checkpoint_path, Path): |
|
checkpoint_path = Path(checkpoint_path) |
|
|
|
if "yslan" in str(checkpoint_path): |
|
hf_ckpt = str(checkpoint_path).split('/') |
|
repo_id = '/'.join(hf_ckpt[:2]) |
|
file_name = '/'.join(hf_ckpt[2:]) |
|
model_path = hf_hub_download(repo_id=repo_id, |
|
filename=file_name) |
|
ckpt = torch.load(model_path, map_location=torch.device('cpu')) |
|
algo.load_state_dict(ckpt['state_dict'], strict=False) |
|
|
|
elif checkpoint_path.suffix == ".pt": |
|
ckpt = torch.load(checkpoint_path, weights_only=True) |
|
algo.load_state_dict(ckpt, strict=False) |
|
elif checkpoint_path.suffix == ".ckpt": |
|
ckpt = torch.load(checkpoint_path, map_location=torch.device('cpu')) |
|
algo.load_state_dict(ckpt['state_dict'], strict=False) |
|
elif checkpoint_path.suffix == ".safetensors": |
|
load_model(algo, checkpoint_path, strict=False) |
|
elif os.path.isdir(checkpoint_path): |
|
ckpt_files = [f for f in os.listdir(checkpoint_path) if f.endswith('.ckpt')] |
|
if not ckpt_files: |
|
raise FileNotFoundError("在指定文件夹中未找到任何 .ckpt 文件!") |
|
selected_ckpt = max(ckpt_files) |
|
selected_ckpt_path = os.path.join(checkpoint_path, selected_ckpt) |
|
print(f"加载的 checkpoint 文件为: {selected_ckpt_path}") |
|
|
|
ckpt = torch.load(selected_ckpt_path, map_location=torch.device('cpu')) |
|
algo.load_state_dict(ckpt['state_dict'], strict=False) |
|
|
|
rank_zero_info("Model weights loaded.") |
|
|
|
class BaseExperiment(ABC): |
|
""" |
|
Abstract class for an experiment. This generalizes the pytorch lightning Trainer & lightning Module to more |
|
flexible experiments that doesn't fit in the typical ml loop, e.g. multi-stage reinforcement learning benchmarks. |
|
""" |
|
|
|
|
|
compatible_algorithms: Dict = NotImplementedError |
|
|
|
def __init__( |
|
self, |
|
root_cfg: DictConfig, |
|
logger: Optional[WandbLogger] = None, |
|
ckpt_path: Optional[Union[str, pathlib.Path]] = None, |
|
) -> None: |
|
""" |
|
Constructor |
|
|
|
Args: |
|
cfg: configuration file that contains everything about the experiment |
|
logger: a pytorch-lightning WandbLogger instance |
|
ckpt_path: an optional path to saved checkpoint |
|
""" |
|
super().__init__() |
|
self.root_cfg = root_cfg |
|
self.cfg = root_cfg.experiment |
|
self.debug = root_cfg.debug |
|
self.logger = logger |
|
self.ckpt_path = ckpt_path |
|
self.algo = None |
|
self.customized_load = self.cfg.customized_load |
|
self.load_vae = self.cfg.load_vae |
|
self.load_t_to_r = self.cfg.load_t_to_r |
|
self.zero_init_gate=self.cfg.zero_init_gate |
|
self.only_tune_refer = self.cfg.only_tune_refer |
|
self.diffusion_path = self.cfg.diffusion_path |
|
self.vae_path = self.cfg.vae_path |
|
self.pose_predictor_path = self.cfg.pose_predictor_path |
|
|
|
def _build_algo(self): |
|
""" |
|
Build the lightning module |
|
:return: a pytorch-lightning module to be launched |
|
""" |
|
algo_name = self.root_cfg.algorithm._name |
|
if algo_name not in self.compatible_algorithms: |
|
raise ValueError( |
|
f"Algorithm {algo_name} not found in compatible_algorithms for this Experiment class. " |
|
"Make sure you define compatible_algorithms correctly and make sure that each key has " |
|
"same name as yaml file under '[project_root]/configurations/algorithm' without .yaml suffix" |
|
) |
|
return self.compatible_algorithms[algo_name](self.root_cfg.algorithm) |
|
|
|
def exec_task(self, task: str) -> None: |
|
""" |
|
Executing a certain task specified by string. Each task should be a stage of experiment. |
|
In most computer vision / nlp applications, tasks should be just train and test. |
|
In reinforcement learning, you might have more stages such as collecting dataset etc |
|
|
|
Args: |
|
task: a string specifying a task implemented for this experiment |
|
""" |
|
if hasattr(self, task) and callable(getattr(self, task)): |
|
if is_rank_zero: |
|
print(cyan("Executing task:"), f"{task} out of {self.cfg.tasks}") |
|
getattr(self, task)() |
|
else: |
|
raise ValueError( |
|
f"Specified task '{task}' not defined for class {self.__class__.__name__} or is not callable." |
|
) |
|
|
|
def exec_interactive(self, task: str) -> None: |
|
""" |
|
Executing a certain task specified by string. Each task should be a stage of experiment. |
|
In most computer vision / nlp applications, tasks should be just train and test. |
|
In reinforcement learning, you might have more stages such as collecting dataset etc |
|
|
|
Args: |
|
task: a string specifying a task implemented for this experiment |
|
""" |
|
if hasattr(self, task) and callable(getattr(self, task)): |
|
if is_rank_zero: |
|
print(cyan("Executing task:"), f"{task} out of {self.cfg.tasks}") |
|
return getattr(self, task)() |
|
else: |
|
raise ValueError( |
|
f"Specified task '{task}' not defined for class {self.__class__.__name__} or is not callable." |
|
) |
|
|
|
class BaseLightningExperiment(BaseExperiment): |
|
""" |
|
Abstract class for pytorch lightning experiments. Useful for computer vision & nlp where main components are |
|
simply models, datasets and train loop. |
|
""" |
|
|
|
|
|
compatible_algorithms: Dict = NotImplementedError |
|
|
|
|
|
compatible_datasets: Dict = NotImplementedError |
|
|
|
def _build_trainer_callbacks(self): |
|
callbacks = [] |
|
if self.logger: |
|
callbacks.append(LearningRateMonitor("step", True)) |
|
|
|
def _build_training_loader(self) -> Optional[Union[TRAIN_DATALOADERS, pl.LightningDataModule]]: |
|
train_dataset = self._build_dataset("training") |
|
shuffle = ( |
|
False if isinstance(train_dataset, torch.utils.data.IterableDataset) else self.cfg.training.data.shuffle |
|
) |
|
if train_dataset: |
|
return torch.utils.data.DataLoader( |
|
train_dataset, |
|
batch_size=self.cfg.training.batch_size, |
|
num_workers=min(os.cpu_count(), self.cfg.training.data.num_workers), |
|
shuffle=shuffle, |
|
persistent_workers=True, |
|
) |
|
else: |
|
return None |
|
|
|
def _build_validation_loader(self) -> Optional[Union[TRAIN_DATALOADERS, pl.LightningDataModule]]: |
|
validation_dataset = self._build_dataset("validation") |
|
shuffle = ( |
|
False |
|
if isinstance(validation_dataset, torch.utils.data.IterableDataset) |
|
else self.cfg.validation.data.shuffle |
|
) |
|
if validation_dataset: |
|
return torch.utils.data.DataLoader( |
|
validation_dataset, |
|
batch_size=self.cfg.validation.batch_size, |
|
num_workers=min(os.cpu_count(), self.cfg.validation.data.num_workers), |
|
shuffle=shuffle, |
|
persistent_workers=True, |
|
) |
|
else: |
|
return None |
|
|
|
def _build_test_loader(self) -> Optional[Union[TRAIN_DATALOADERS, pl.LightningDataModule]]: |
|
test_dataset = self._build_dataset("test") |
|
shuffle = False if isinstance(test_dataset, torch.utils.data.IterableDataset) else self.cfg.test.data.shuffle |
|
if test_dataset: |
|
return torch.utils.data.DataLoader( |
|
test_dataset, |
|
batch_size=self.cfg.test.batch_size, |
|
num_workers=min(os.cpu_count(), self.cfg.test.data.num_workers), |
|
shuffle=shuffle, |
|
persistent_workers=True, |
|
) |
|
else: |
|
return None |
|
|
|
def training(self) -> None: |
|
""" |
|
All training happens here |
|
""" |
|
if not self.algo: |
|
self.algo = self._build_algo() |
|
if self.cfg.training.compile: |
|
self.algo = torch.compile(self.algo) |
|
|
|
callbacks = [] |
|
if self.logger: |
|
callbacks.append(LearningRateMonitor("step", True)) |
|
if "checkpointing" in self.cfg.training: |
|
callbacks.append( |
|
ModelCheckpoint( |
|
pathlib.Path(hydra.core.hydra_config.HydraConfig.get()["runtime"]["output_dir"]) / "checkpoints", |
|
**self.cfg.training.checkpointing, |
|
) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trainer = pl.Trainer( |
|
accelerator="auto", |
|
devices="auto", |
|
strategy=DDPStrategy(find_unused_parameters=True) if torch.cuda.device_count() > 1 else "auto", |
|
logger=self.logger or False, |
|
callbacks=callbacks, |
|
gradient_clip_val=self.cfg.training.optim.gradient_clip_val or 0.0, |
|
val_check_interval=self.cfg.validation.val_every_n_step if self.cfg.validation.val_every_n_step else None, |
|
limit_val_batches=self.cfg.validation.limit_batch, |
|
check_val_every_n_epoch=self.cfg.validation.val_every_n_epoch if not self.cfg.validation.val_every_n_step else None, |
|
accumulate_grad_batches=self.cfg.training.optim.accumulate_grad_batches or 1, |
|
precision=self.cfg.training.precision or 32, |
|
detect_anomaly=False, |
|
num_sanity_val_steps=int(self.cfg.debug) if self.cfg.debug else 0, |
|
max_epochs=self.cfg.training.max_epochs, |
|
max_steps=self.cfg.training.max_steps, |
|
max_time=self.cfg.training.max_time |
|
) |
|
|
|
|
|
if self.customized_load: |
|
if self.load_vae: |
|
load_custom_checkpoint(algo=self.algo.diffusion_model.model,optimizer=None,checkpoint_path=self.ckpt_path) |
|
load_custom_checkpoint(algo=self.algo.vae,optimizer=None,checkpoint_path=self.vae_path) |
|
else: |
|
load_custom_checkpoint(algo=self.algo,optimizer=None,checkpoint_path=self.ckpt_path) |
|
|
|
if self.load_t_to_r: |
|
param_list = [] |
|
for name, para in self.algo.diffusion_model.named_parameters(): |
|
if 't_' in name and 't_embedder' not in name: |
|
print(name) |
|
param_list.append(para) |
|
|
|
it = 0 |
|
for name, para in self.algo.diffusion_model.named_parameters(): |
|
if 'r_' in name: |
|
para.requires_grad_(False) |
|
try: |
|
para.copy_(param_list[it].detach().cpu()) |
|
except: |
|
import pdb;pdb.set_trace() |
|
para.requires_grad_(True) |
|
it += 1 |
|
|
|
if self.zero_init_gate: |
|
for name, para in self.algo.diffusion_model.named_parameters(): |
|
if 'r_adaLN_modulation' in name: |
|
para.requires_grad_(False) |
|
para[2*1024:3*1024] = 0 |
|
para[5*1024:6*1024] = 0 |
|
para.requires_grad_(True) |
|
|
|
if self.only_tune_refer: |
|
for name, para in self.algo.diffusion_model.named_parameters(): |
|
para.requires_grad_(False) |
|
if 'r_' in name or 'pose_embedder' in name or 'pose_cond_mlp' in name or 'lora_' in name: |
|
para.requires_grad_(True) |
|
|
|
trainer.fit( |
|
self.algo, |
|
train_dataloaders=self._build_training_loader(), |
|
val_dataloaders=self._build_validation_loader(), |
|
ckpt_path=None, |
|
) |
|
else: |
|
|
|
if self.only_tune_refer: |
|
for name, para in self.algo.diffusion_model.named_parameters(): |
|
para.requires_grad_(False) |
|
if 'r_' in name or 'pose_embedder' in name or 'pose_cond_mlp' in name or 'lora_' in name: |
|
para.requires_grad_(True) |
|
|
|
trainer.fit( |
|
self.algo, |
|
train_dataloaders=self._build_training_loader(), |
|
val_dataloaders=self._build_validation_loader(), |
|
ckpt_path=self.ckpt_path, |
|
) |
|
|
|
def validation(self) -> None: |
|
""" |
|
All validation happens here |
|
""" |
|
if not self.algo: |
|
self.algo = self._build_algo() |
|
if self.cfg.validation.compile: |
|
self.algo = torch.compile(self.algo) |
|
|
|
callbacks = [] |
|
|
|
trainer = pl.Trainer( |
|
accelerator="auto", |
|
logger=self.logger, |
|
devices="auto", |
|
num_nodes=self.cfg.num_nodes, |
|
strategy=DDPStrategy(find_unused_parameters=False) if torch.cuda.device_count() > 1 else "auto", |
|
callbacks=callbacks, |
|
|
|
limit_val_batches=self.cfg.validation.limit_batch, |
|
precision=self.cfg.validation.precision, |
|
detect_anomaly=False, |
|
inference_mode=self.cfg.validation.inference_mode, |
|
) |
|
|
|
if self.customized_load: |
|
|
|
if self.load_vae: |
|
load_custom_checkpoint(algo=self.algo.diffusion_model.model,optimizer=None,checkpoint_path=self.ckpt_path) |
|
load_custom_checkpoint(algo=self.algo.vae,optimizer=None,checkpoint_path=self.vae_path) |
|
else: |
|
load_custom_checkpoint(algo=self.algo,optimizer=None,checkpoint_path=self.ckpt_path) |
|
|
|
if self.load_t_to_r: |
|
param_list = [] |
|
for name, para in self.algo.diffusion_model.named_parameters(): |
|
if 't_' in name and 't_embedder' not in name: |
|
print(name) |
|
param_list.append(para) |
|
|
|
it = 0 |
|
for name, para in self.algo.diffusion_model.named_parameters(): |
|
if 'r_' in name: |
|
para.requires_grad_(False) |
|
try: |
|
para.copy_(param_list[it].detach().cpu()) |
|
except: |
|
import pdb;pdb.set_trace() |
|
para.requires_grad_(True) |
|
it += 1 |
|
|
|
if self.zero_init_gate: |
|
for name, para in self.algo.diffusion_model.named_parameters(): |
|
if 'r_adaLN_modulation' in name: |
|
para.requires_grad_(False) |
|
para[2*1024:3*1024] = 0 |
|
para[5*1024:6*1024] = 0 |
|
para.requires_grad_(True) |
|
|
|
trainer.validate( |
|
self.algo, |
|
dataloaders=self._build_validation_loader(), |
|
ckpt_path=None, |
|
) |
|
else: |
|
trainer.validate( |
|
self.algo, |
|
dataloaders=self._build_validation_loader(), |
|
ckpt_path=self.ckpt_path, |
|
) |
|
|
|
def test(self) -> None: |
|
""" |
|
All testing happens here |
|
""" |
|
if not self.algo: |
|
self.algo = self._build_algo() |
|
if self.cfg.test.compile: |
|
self.algo = torch.compile(self.algo) |
|
|
|
callbacks = [] |
|
|
|
trainer = pl.Trainer( |
|
accelerator="auto", |
|
logger=self.logger, |
|
devices="auto", |
|
num_nodes=self.cfg.num_nodes, |
|
strategy=DDPStrategy(find_unused_parameters=False) if torch.cuda.device_count() > 1 else "auto", |
|
callbacks=callbacks, |
|
limit_test_batches=self.cfg.test.limit_batch, |
|
precision=self.cfg.test.precision, |
|
detect_anomaly=False, |
|
) |
|
|
|
|
|
|
|
trainer.test( |
|
self.algo, |
|
dataloaders=self._build_test_loader(), |
|
ckpt_path=self.ckpt_path, |
|
) |
|
if not self.algo: |
|
self.algo = self._build_algo() |
|
if self.cfg.validation.compile: |
|
self.algo = torch.compile(self.algo) |
|
|
|
|
|
def interactive(self): |
|
|
|
if not self.algo: |
|
self.algo = self._build_algo() |
|
if self.cfg.validation.compile: |
|
self.algo = torch.compile(self.algo) |
|
|
|
if self.customized_load: |
|
load_custom_checkpoint(algo=self.algo.diffusion_model,optimizer=None,checkpoint_path=self.diffusion_path) |
|
load_custom_checkpoint(algo=self.algo.vae,optimizer=None,checkpoint_path=self.vae_path) |
|
load_custom_checkpoint(algo=self.algo.pose_prediction_model,optimizer=None,checkpoint_path=self.pose_predictor_path) |
|
return self.algo |
|
else: |
|
raise NotImplementedError |
|
|
|
def _build_dataset(self, split: str) -> Optional[torch.utils.data.Dataset]: |
|
if split in ["training", "test", "validation"]: |
|
return self.compatible_datasets[self.root_cfg.dataset._name](self.root_cfg.dataset, split=split) |
|
else: |
|
raise NotImplementedError(f"split '{split}' is not implemented") |
|
|