worldmem / experiments /exp_base.py
xizaoqu
add huggingface_load
4170d69
raw
history blame
20.4 kB
"""
This repo is forked from [Boyuan Chen](https://boyuan.space/)'s research
template [repo](https://github.com/buoyancy99/research-template).
By its MIT license, you must keep the above sentence in `README.md`
and the `LICENSE` file to credit the author.
"""
from abc import ABC, abstractmethod
from typing import Optional, Union, Literal, List, Dict
import pathlib
import os
import hydra
import torch
from lightning.pytorch.strategies.ddp import DDPStrategy
import lightning.pytorch as pl
from lightning.pytorch.loggers.wandb import WandbLogger
from lightning.pytorch.utilities.types import TRAIN_DATALOADERS
from lightning.pytorch.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_info
from omegaconf import DictConfig
from utils.print_utils import cyan
from utils.distributed_utils import is_rank_zero
from safetensors.torch import load_model
from pathlib import Path
from huggingface_hub import hf_hub_download
torch.set_float32_matmul_precision("high")
def load_custom_checkpoint(algo, optimizer, checkpoint_path):
if not checkpoint_path:
rank_zero_info("No checkpoint path provided, skipping checkpoint loading.")
return None
if not isinstance(checkpoint_path, Path):
checkpoint_path = Path(checkpoint_path)
if "yslan" in str(checkpoint_path):
hf_ckpt = str(checkpoint_path).split('/')
repo_id = '/'.join(hf_ckpt[:2])
file_name = '/'.join(hf_ckpt[2:])
model_path = hf_hub_download(repo_id=repo_id,
filename=file_name)
ckpt = torch.load(model_path, map_location=torch.device('cpu'))
algo.load_state_dict(ckpt['state_dict'], strict=False)
elif checkpoint_path.suffix == ".pt":
ckpt = torch.load(checkpoint_path, weights_only=True)
algo.load_state_dict(ckpt, strict=False)
elif checkpoint_path.suffix == ".ckpt":
ckpt = torch.load(checkpoint_path, map_location=torch.device('cpu'))
algo.load_state_dict(ckpt['state_dict'], strict=False)
elif checkpoint_path.suffix == ".safetensors":
load_model(algo, checkpoint_path, strict=False)
elif os.path.isdir(checkpoint_path):
ckpt_files = [f for f in os.listdir(checkpoint_path) if f.endswith('.ckpt')]
if not ckpt_files:
raise FileNotFoundError("在指定文件夹中未找到任何 .ckpt 文件!")
selected_ckpt = max(ckpt_files)
selected_ckpt_path = os.path.join(checkpoint_path, selected_ckpt)
print(f"加载的 checkpoint 文件为: {selected_ckpt_path}")
ckpt = torch.load(selected_ckpt_path, map_location=torch.device('cpu'))
algo.load_state_dict(ckpt['state_dict'], strict=False)
rank_zero_info("Model weights loaded.")
class BaseExperiment(ABC):
"""
Abstract class for an experiment. This generalizes the pytorch lightning Trainer & lightning Module to more
flexible experiments that doesn't fit in the typical ml loop, e.g. multi-stage reinforcement learning benchmarks.
"""
# each key has to be a yaml file under '[project_root]/configurations/algorithm' without .yaml suffix
compatible_algorithms: Dict = NotImplementedError
def __init__(
self,
root_cfg: DictConfig,
logger: Optional[WandbLogger] = None,
ckpt_path: Optional[Union[str, pathlib.Path]] = None,
) -> None:
"""
Constructor
Args:
cfg: configuration file that contains everything about the experiment
logger: a pytorch-lightning WandbLogger instance
ckpt_path: an optional path to saved checkpoint
"""
super().__init__()
self.root_cfg = root_cfg
self.cfg = root_cfg.experiment
self.debug = root_cfg.debug
self.logger = logger
self.ckpt_path = ckpt_path
self.algo = None
self.customized_load = self.cfg.customized_load
self.load_vae = self.cfg.load_vae
self.load_t_to_r = self.cfg.load_t_to_r
self.zero_init_gate=self.cfg.zero_init_gate
self.only_tune_refer = self.cfg.only_tune_refer
self.diffusion_path = self.cfg.diffusion_path
self.vae_path = self.cfg.vae_path # "/mnt/xiaozeqi/.cache/huggingface/hub/models--Etched--oasis-500m/snapshots/4ca7d2d811f4f0c6fd1d5719bf83f14af3446c0c/vit-l-20.safetensors"
self.pose_predictor_path = self.cfg.pose_predictor_path # "/mnt/xiaozeqi/diffusionforcing/outputs/2025-03-28/16-45-11/checkpoints/epoch0step595000.ckpt"
def _build_algo(self):
"""
Build the lightning module
:return: a pytorch-lightning module to be launched
"""
algo_name = self.root_cfg.algorithm._name
if algo_name not in self.compatible_algorithms:
raise ValueError(
f"Algorithm {algo_name} not found in compatible_algorithms for this Experiment class. "
"Make sure you define compatible_algorithms correctly and make sure that each key has "
"same name as yaml file under '[project_root]/configurations/algorithm' without .yaml suffix"
)
return self.compatible_algorithms[algo_name](self.root_cfg.algorithm)
def exec_task(self, task: str) -> None:
"""
Executing a certain task specified by string. Each task should be a stage of experiment.
In most computer vision / nlp applications, tasks should be just train and test.
In reinforcement learning, you might have more stages such as collecting dataset etc
Args:
task: a string specifying a task implemented for this experiment
"""
if hasattr(self, task) and callable(getattr(self, task)):
if is_rank_zero:
print(cyan("Executing task:"), f"{task} out of {self.cfg.tasks}")
getattr(self, task)()
else:
raise ValueError(
f"Specified task '{task}' not defined for class {self.__class__.__name__} or is not callable."
)
def exec_interactive(self, task: str) -> None:
"""
Executing a certain task specified by string. Each task should be a stage of experiment.
In most computer vision / nlp applications, tasks should be just train and test.
In reinforcement learning, you might have more stages such as collecting dataset etc
Args:
task: a string specifying a task implemented for this experiment
"""
if hasattr(self, task) and callable(getattr(self, task)):
if is_rank_zero:
print(cyan("Executing task:"), f"{task} out of {self.cfg.tasks}")
return getattr(self, task)()
else:
raise ValueError(
f"Specified task '{task}' not defined for class {self.__class__.__name__} or is not callable."
)
class BaseLightningExperiment(BaseExperiment):
"""
Abstract class for pytorch lightning experiments. Useful for computer vision & nlp where main components are
simply models, datasets and train loop.
"""
# each key has to be a yaml file under '[project_root]/configurations/algorithm' without .yaml suffix
compatible_algorithms: Dict = NotImplementedError
# each key has to be a yaml file under '[project_root]/configurations/dataset' without .yaml suffix
compatible_datasets: Dict = NotImplementedError
def _build_trainer_callbacks(self):
callbacks = []
if self.logger:
callbacks.append(LearningRateMonitor("step", True))
def _build_training_loader(self) -> Optional[Union[TRAIN_DATALOADERS, pl.LightningDataModule]]:
train_dataset = self._build_dataset("training")
shuffle = (
False if isinstance(train_dataset, torch.utils.data.IterableDataset) else self.cfg.training.data.shuffle
)
if train_dataset:
return torch.utils.data.DataLoader(
train_dataset,
batch_size=self.cfg.training.batch_size,
num_workers=min(os.cpu_count(), self.cfg.training.data.num_workers),
shuffle=shuffle,
persistent_workers=True,
)
else:
return None
def _build_validation_loader(self) -> Optional[Union[TRAIN_DATALOADERS, pl.LightningDataModule]]:
validation_dataset = self._build_dataset("validation")
shuffle = (
False
if isinstance(validation_dataset, torch.utils.data.IterableDataset)
else self.cfg.validation.data.shuffle
)
if validation_dataset:
return torch.utils.data.DataLoader(
validation_dataset,
batch_size=self.cfg.validation.batch_size,
num_workers=min(os.cpu_count(), self.cfg.validation.data.num_workers),
shuffle=shuffle,
persistent_workers=True,
)
else:
return None
def _build_test_loader(self) -> Optional[Union[TRAIN_DATALOADERS, pl.LightningDataModule]]:
test_dataset = self._build_dataset("test")
shuffle = False if isinstance(test_dataset, torch.utils.data.IterableDataset) else self.cfg.test.data.shuffle
if test_dataset:
return torch.utils.data.DataLoader(
test_dataset,
batch_size=self.cfg.test.batch_size,
num_workers=min(os.cpu_count(), self.cfg.test.data.num_workers),
shuffle=shuffle,
persistent_workers=True,
)
else:
return None
def training(self) -> None:
"""
All training happens here
"""
if not self.algo:
self.algo = self._build_algo()
if self.cfg.training.compile:
self.algo = torch.compile(self.algo)
callbacks = []
if self.logger:
callbacks.append(LearningRateMonitor("step", True))
if "checkpointing" in self.cfg.training:
callbacks.append(
ModelCheckpoint(
pathlib.Path(hydra.core.hydra_config.HydraConfig.get()["runtime"]["output_dir"]) / "checkpoints",
**self.cfg.training.checkpointing,
)
)
# TODO do not upload checkpoint to wandb
# trainer = pl.Trainer(
# accelerator="auto",
# logger=self.logger if self.logger else False,
# devices=torch.cuda.device_count(),
# num_nodes=self.cfg.num_nodes,
# strategy=DDPStrategy(find_unused_parameters=True) if torch.cuda.device_count() > 1 else "auto",
# callbacks=callbacks,
# gradient_clip_val=self.cfg.training.optim.gradient_clip_val,
# val_check_interval=self.cfg.validation.val_every_n_step,
# limit_val_batches=self.cfg.validation.limit_batch,
# check_val_every_n_epoch=self.cfg.validation.val_every_n_epoch,
# accumulate_grad_batches=self.cfg.training.optim.accumulate_grad_batches,
# precision=self.cfg.training.precision,
# detect_anomaly=False, # self.cfg.debug,
# num_sanity_val_steps=int(self.cfg.debug),
# max_epochs=self.cfg.training.max_epochs,
# max_steps=self.cfg.training.max_steps,
# max_time=self.cfg.training.max_time,
# )
trainer = pl.Trainer(
accelerator="auto",
devices="auto", # 自动选择设备
strategy=DDPStrategy(find_unused_parameters=True) if torch.cuda.device_count() > 1 else "auto",
logger=self.logger or False, # 简化写法
callbacks=callbacks,
gradient_clip_val=self.cfg.training.optim.gradient_clip_val or 0.0, # 确保默认值
val_check_interval=self.cfg.validation.val_every_n_step if self.cfg.validation.val_every_n_step else None,
limit_val_batches=self.cfg.validation.limit_batch,
check_val_every_n_epoch=self.cfg.validation.val_every_n_epoch if not self.cfg.validation.val_every_n_step else None,
accumulate_grad_batches=self.cfg.training.optim.accumulate_grad_batches or 1, # 默认累积为1
precision=self.cfg.training.precision or 32, # 默认32位精度
detect_anomaly=False, # 默认关闭异常检测
num_sanity_val_steps=int(self.cfg.debug) if self.cfg.debug else 0,
max_epochs=self.cfg.training.max_epochs,
max_steps=self.cfg.training.max_steps,
max_time=self.cfg.training.max_time
)
if self.customized_load:
if self.load_vae:
load_custom_checkpoint(algo=self.algo.diffusion_model.model,optimizer=None,checkpoint_path=self.ckpt_path)
load_custom_checkpoint(algo=self.algo.vae,optimizer=None,checkpoint_path=self.vae_path)
else:
load_custom_checkpoint(algo=self.algo,optimizer=None,checkpoint_path=self.ckpt_path)
if self.load_t_to_r:
param_list = []
for name, para in self.algo.diffusion_model.named_parameters():
if 't_' in name and 't_embedder' not in name:
print(name)
param_list.append(para)
it = 0
for name, para in self.algo.diffusion_model.named_parameters():
if 'r_' in name:
para.requires_grad_(False)
try:
para.copy_(param_list[it].detach().cpu())
except:
import pdb;pdb.set_trace()
para.requires_grad_(True)
it += 1
if self.zero_init_gate:
for name, para in self.algo.diffusion_model.named_parameters():
if 'r_adaLN_modulation' in name:
para.requires_grad_(False)
para[2*1024:3*1024] = 0
para[5*1024:6*1024] = 0
para.requires_grad_(True)
if self.only_tune_refer:
for name, para in self.algo.diffusion_model.named_parameters():
para.requires_grad_(False)
if 'r_' in name or 'pose_embedder' in name or 'pose_cond_mlp' in name or 'lora_' in name:
para.requires_grad_(True)
trainer.fit(
self.algo,
train_dataloaders=self._build_training_loader(),
val_dataloaders=self._build_validation_loader(),
ckpt_path=None,
)
else:
if self.only_tune_refer:
for name, para in self.algo.diffusion_model.named_parameters():
para.requires_grad_(False)
if 'r_' in name or 'pose_embedder' in name or 'pose_cond_mlp' in name or 'lora_' in name:
para.requires_grad_(True)
trainer.fit(
self.algo,
train_dataloaders=self._build_training_loader(),
val_dataloaders=self._build_validation_loader(),
ckpt_path=self.ckpt_path,
)
def validation(self) -> None:
"""
All validation happens here
"""
if not self.algo:
self.algo = self._build_algo()
if self.cfg.validation.compile:
self.algo = torch.compile(self.algo)
callbacks = []
trainer = pl.Trainer(
accelerator="auto",
logger=self.logger,
devices="auto",
num_nodes=self.cfg.num_nodes,
strategy=DDPStrategy(find_unused_parameters=False) if torch.cuda.device_count() > 1 else "auto",
callbacks=callbacks,
# limit_val_batches=self.cfg.validation.limit_batch,
limit_val_batches=self.cfg.validation.limit_batch,
precision=self.cfg.validation.precision,
detect_anomaly=False, # self.cfg.debug,
inference_mode=self.cfg.validation.inference_mode,
)
if self.customized_load:
if self.load_vae:
load_custom_checkpoint(algo=self.algo.diffusion_model.model,optimizer=None,checkpoint_path=self.ckpt_path)
load_custom_checkpoint(algo=self.algo.vae,optimizer=None,checkpoint_path=self.vae_path)
else:
load_custom_checkpoint(algo=self.algo,optimizer=None,checkpoint_path=self.ckpt_path)
if self.load_t_to_r:
param_list = []
for name, para in self.algo.diffusion_model.named_parameters():
if 't_' in name and 't_embedder' not in name:
print(name)
param_list.append(para)
it = 0
for name, para in self.algo.diffusion_model.named_parameters():
if 'r_' in name:
para.requires_grad_(False)
try:
para.copy_(param_list[it].detach().cpu())
except:
import pdb;pdb.set_trace()
para.requires_grad_(True)
it += 1
if self.zero_init_gate:
for name, para in self.algo.diffusion_model.named_parameters():
if 'r_adaLN_modulation' in name:
para.requires_grad_(False)
para[2*1024:3*1024] = 0
para[5*1024:6*1024] = 0
para.requires_grad_(True)
trainer.validate(
self.algo,
dataloaders=self._build_validation_loader(),
ckpt_path=None,
)
else:
trainer.validate(
self.algo,
dataloaders=self._build_validation_loader(),
ckpt_path=self.ckpt_path,
)
def test(self) -> None:
"""
All testing happens here
"""
if not self.algo:
self.algo = self._build_algo()
if self.cfg.test.compile:
self.algo = torch.compile(self.algo)
callbacks = []
trainer = pl.Trainer(
accelerator="auto",
logger=self.logger,
devices="auto",
num_nodes=self.cfg.num_nodes,
strategy=DDPStrategy(find_unused_parameters=False) if torch.cuda.device_count() > 1 else "auto",
callbacks=callbacks,
limit_test_batches=self.cfg.test.limit_batch,
precision=self.cfg.test.precision,
detect_anomaly=False, # self.cfg.debug,
)
# Only load the checkpoint if only testing. Otherwise, it will have been loaded
# and further trained during train.
trainer.test(
self.algo,
dataloaders=self._build_test_loader(),
ckpt_path=self.ckpt_path,
)
if not self.algo:
self.algo = self._build_algo()
if self.cfg.validation.compile:
self.algo = torch.compile(self.algo)
def interactive(self):
if not self.algo:
self.algo = self._build_algo()
if self.cfg.validation.compile:
self.algo = torch.compile(self.algo)
if self.customized_load:
load_custom_checkpoint(algo=self.algo.diffusion_model,optimizer=None,checkpoint_path=self.diffusion_path)
load_custom_checkpoint(algo=self.algo.vae,optimizer=None,checkpoint_path=self.vae_path)
load_custom_checkpoint(algo=self.algo.pose_prediction_model,optimizer=None,checkpoint_path=self.pose_predictor_path)
return self.algo
else:
raise NotImplementedError
def _build_dataset(self, split: str) -> Optional[torch.utils.data.Dataset]:
if split in ["training", "test", "validation"]:
return self.compatible_datasets[self.root_cfg.dataset._name](self.root_cfg.dataset, split=split)
else:
raise NotImplementedError(f"split '{split}' is not implemented")