File size: 20,417 Bytes
27ca8b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4170d69
27ca8b3
 
 
 
 
 
 
 
 
 
 
4170d69
 
 
 
 
 
 
 
 
 
27ca8b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c09e983
 
 
 
 
 
 
 
27ca8b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c09e983
27ca8b3
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
"""
This repo is forked from [Boyuan Chen](https://boyuan.space/)'s research 
template [repo](https://github.com/buoyancy99/research-template). 
By its MIT license, you must keep the above sentence in `README.md` 
and the `LICENSE` file to credit the author.
"""

from abc import ABC, abstractmethod
from typing import Optional, Union, Literal, List, Dict
import pathlib
import os

import hydra
import torch
from lightning.pytorch.strategies.ddp import DDPStrategy

import lightning.pytorch as pl
from lightning.pytorch.loggers.wandb import WandbLogger
from lightning.pytorch.utilities.types import TRAIN_DATALOADERS
from lightning.pytorch.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_info

from omegaconf import DictConfig

from utils.print_utils import cyan
from utils.distributed_utils import is_rank_zero
from safetensors.torch import load_model
from pathlib import Path
from huggingface_hub import hf_hub_download

torch.set_float32_matmul_precision("high")

def load_custom_checkpoint(algo, optimizer, checkpoint_path):
    if not checkpoint_path:
        rank_zero_info("No checkpoint path provided, skipping checkpoint loading.")
        return None

    if not isinstance(checkpoint_path, Path):
        checkpoint_path = Path(checkpoint_path)

    if  "yslan" in str(checkpoint_path):
        hf_ckpt = str(checkpoint_path).split('/')
        repo_id = '/'.join(hf_ckpt[:2])
        file_name = '/'.join(hf_ckpt[2:])
        model_path = hf_hub_download(repo_id=repo_id, 
                            filename=file_name)
        ckpt = torch.load(model_path, map_location=torch.device('cpu'))
        algo.load_state_dict(ckpt['state_dict'], strict=False)

    elif checkpoint_path.suffix == ".pt":
        ckpt = torch.load(checkpoint_path, weights_only=True)
        algo.load_state_dict(ckpt, strict=False)
    elif checkpoint_path.suffix == ".ckpt":
        ckpt = torch.load(checkpoint_path, map_location=torch.device('cpu'))
        algo.load_state_dict(ckpt['state_dict'], strict=False)
    elif checkpoint_path.suffix == ".safetensors":
        load_model(algo, checkpoint_path, strict=False)
    elif os.path.isdir(checkpoint_path):
        ckpt_files = [f for f in os.listdir(checkpoint_path) if f.endswith('.ckpt')]
        if not ckpt_files:
            raise FileNotFoundError("在指定文件夹中未找到任何 .ckpt 文件!")
        selected_ckpt = max(ckpt_files)
        selected_ckpt_path = os.path.join(checkpoint_path, selected_ckpt)
        print(f"加载的 checkpoint 文件为: {selected_ckpt_path}")
        
        ckpt = torch.load(selected_ckpt_path, map_location=torch.device('cpu'))
        algo.load_state_dict(ckpt['state_dict'], strict=False)

    rank_zero_info("Model weights loaded.")

class BaseExperiment(ABC):
    """
    Abstract class for an experiment. This generalizes the pytorch lightning Trainer & lightning Module to more
    flexible experiments that doesn't fit in the typical ml loop, e.g. multi-stage reinforcement learning benchmarks.
    """

    # each key has to be a yaml file under '[project_root]/configurations/algorithm' without .yaml suffix
    compatible_algorithms: Dict = NotImplementedError

    def __init__(
        self,
        root_cfg: DictConfig,
        logger: Optional[WandbLogger] = None,
        ckpt_path: Optional[Union[str, pathlib.Path]] = None,
    ) -> None:
        """
        Constructor

        Args:
            cfg: configuration file that contains everything about the experiment
            logger: a pytorch-lightning WandbLogger instance
            ckpt_path: an optional path to saved checkpoint
        """
        super().__init__()
        self.root_cfg = root_cfg
        self.cfg = root_cfg.experiment
        self.debug = root_cfg.debug
        self.logger = logger
        self.ckpt_path = ckpt_path
        self.algo = None
        self.customized_load = self.cfg.customized_load
        self.load_vae = self.cfg.load_vae
        self.load_t_to_r = self.cfg.load_t_to_r
        self.zero_init_gate=self.cfg.zero_init_gate
        self.only_tune_refer = self.cfg.only_tune_refer
        self.diffusion_path = self.cfg.diffusion_path
        self.vae_path = self.cfg.vae_path # "/mnt/xiaozeqi/.cache/huggingface/hub/models--Etched--oasis-500m/snapshots/4ca7d2d811f4f0c6fd1d5719bf83f14af3446c0c/vit-l-20.safetensors"
        self.pose_predictor_path = self.cfg.pose_predictor_path # "/mnt/xiaozeqi/diffusionforcing/outputs/2025-03-28/16-45-11/checkpoints/epoch0step595000.ckpt"

    def _build_algo(self):
        """
        Build the lightning module
        :return:  a pytorch-lightning module to be launched
        """
        algo_name = self.root_cfg.algorithm._name
        if algo_name not in self.compatible_algorithms:
            raise ValueError(
                f"Algorithm {algo_name} not found in compatible_algorithms for this Experiment class. "
                "Make sure you define compatible_algorithms correctly and make sure that each key has "
                "same name as yaml file under '[project_root]/configurations/algorithm' without .yaml suffix"
            )
        return self.compatible_algorithms[algo_name](self.root_cfg.algorithm)

    def exec_task(self, task: str) -> None:
        """
        Executing a certain task specified by string. Each task should be a stage of experiment.
        In most computer vision / nlp applications, tasks should be just train and test.
        In reinforcement learning, you might have more stages such as collecting dataset etc

        Args:
            task: a string specifying a task implemented for this experiment
        """
        if hasattr(self, task) and callable(getattr(self, task)):
            if is_rank_zero:
                print(cyan("Executing task:"), f"{task} out of {self.cfg.tasks}")
            getattr(self, task)()
        else:
            raise ValueError(
                f"Specified task '{task}' not defined for class {self.__class__.__name__} or is not callable."
            )

    def exec_interactive(self, task: str) -> None:
        """
        Executing a certain task specified by string. Each task should be a stage of experiment.
        In most computer vision / nlp applications, tasks should be just train and test.
        In reinforcement learning, you might have more stages such as collecting dataset etc

        Args:
            task: a string specifying a task implemented for this experiment
        """
        if hasattr(self, task) and callable(getattr(self, task)):
            if is_rank_zero:
                print(cyan("Executing task:"), f"{task} out of {self.cfg.tasks}")
            return getattr(self, task)()
        else:
            raise ValueError(
                f"Specified task '{task}' not defined for class {self.__class__.__name__} or is not callable."
            )

class BaseLightningExperiment(BaseExperiment):
    """
    Abstract class for pytorch lightning experiments. Useful for computer vision & nlp where main components are
    simply models, datasets and train loop.
    """

    # each key has to be a yaml file under '[project_root]/configurations/algorithm' without .yaml suffix
    compatible_algorithms: Dict = NotImplementedError

    # each key has to be a yaml file under '[project_root]/configurations/dataset' without .yaml suffix
    compatible_datasets: Dict = NotImplementedError

    def _build_trainer_callbacks(self):
        callbacks = []
        if self.logger:
            callbacks.append(LearningRateMonitor("step", True))

    def _build_training_loader(self) -> Optional[Union[TRAIN_DATALOADERS, pl.LightningDataModule]]:
        train_dataset = self._build_dataset("training")
        shuffle = (
            False if isinstance(train_dataset, torch.utils.data.IterableDataset) else self.cfg.training.data.shuffle
        )
        if train_dataset:
            return torch.utils.data.DataLoader(
                train_dataset,
                batch_size=self.cfg.training.batch_size,
                num_workers=min(os.cpu_count(), self.cfg.training.data.num_workers),
                shuffle=shuffle,
                persistent_workers=True,
            )
        else:
            return None

    def _build_validation_loader(self) -> Optional[Union[TRAIN_DATALOADERS, pl.LightningDataModule]]:
        validation_dataset = self._build_dataset("validation")
        shuffle = (
            False
            if isinstance(validation_dataset, torch.utils.data.IterableDataset)
            else self.cfg.validation.data.shuffle
        )
        if validation_dataset:
            return torch.utils.data.DataLoader(
                validation_dataset,
                batch_size=self.cfg.validation.batch_size,
                num_workers=min(os.cpu_count(), self.cfg.validation.data.num_workers),
                shuffle=shuffle,
                persistent_workers=True,
            )
        else:
            return None

    def _build_test_loader(self) -> Optional[Union[TRAIN_DATALOADERS, pl.LightningDataModule]]:
        test_dataset = self._build_dataset("test")
        shuffle = False if isinstance(test_dataset, torch.utils.data.IterableDataset) else self.cfg.test.data.shuffle
        if test_dataset:
            return torch.utils.data.DataLoader(
                test_dataset,
                batch_size=self.cfg.test.batch_size,
                num_workers=min(os.cpu_count(), self.cfg.test.data.num_workers),
                shuffle=shuffle,
                persistent_workers=True,
            )
        else:
            return None

    def training(self) -> None:
        """
        All training happens here
        """
        if not self.algo:
            self.algo = self._build_algo()
        if self.cfg.training.compile:
            self.algo = torch.compile(self.algo)

        callbacks = []
        if self.logger:
            callbacks.append(LearningRateMonitor("step", True))
        if "checkpointing" in self.cfg.training:
            callbacks.append(
                ModelCheckpoint(
                    pathlib.Path(hydra.core.hydra_config.HydraConfig.get()["runtime"]["output_dir"]) / "checkpoints",
                    **self.cfg.training.checkpointing,
                )
            )

        # TODO do not upload checkpoint to wandb

        # trainer = pl.Trainer(
        #     accelerator="auto",
        #     logger=self.logger if self.logger else False,
        #     devices=torch.cuda.device_count(),
        #     num_nodes=self.cfg.num_nodes,
        #     strategy=DDPStrategy(find_unused_parameters=True) if torch.cuda.device_count() > 1 else "auto",
        #     callbacks=callbacks,
        #     gradient_clip_val=self.cfg.training.optim.gradient_clip_val,
        #     val_check_interval=self.cfg.validation.val_every_n_step,
        #     limit_val_batches=self.cfg.validation.limit_batch,
        #     check_val_every_n_epoch=self.cfg.validation.val_every_n_epoch,
        #     accumulate_grad_batches=self.cfg.training.optim.accumulate_grad_batches,
        #     precision=self.cfg.training.precision,
        #     detect_anomaly=False,  # self.cfg.debug,
        #     num_sanity_val_steps=int(self.cfg.debug),
        #     max_epochs=self.cfg.training.max_epochs,
        #     max_steps=self.cfg.training.max_steps,
        #     max_time=self.cfg.training.max_time,
        # )

        trainer = pl.Trainer(
            accelerator="auto",
            devices="auto",  # 自动选择设备
            strategy=DDPStrategy(find_unused_parameters=True) if torch.cuda.device_count() > 1 else "auto",
            logger=self.logger or False,  # 简化写法
            callbacks=callbacks,
            gradient_clip_val=self.cfg.training.optim.gradient_clip_val or 0.0,  # 确保默认值
            val_check_interval=self.cfg.validation.val_every_n_step if self.cfg.validation.val_every_n_step else None,
            limit_val_batches=self.cfg.validation.limit_batch,
            check_val_every_n_epoch=self.cfg.validation.val_every_n_epoch if not self.cfg.validation.val_every_n_step else None,
            accumulate_grad_batches=self.cfg.training.optim.accumulate_grad_batches or 1,  # 默认累积为1
            precision=self.cfg.training.precision or 32,  # 默认32位精度
            detect_anomaly=False,  # 默认关闭异常检测
            num_sanity_val_steps=int(self.cfg.debug) if self.cfg.debug else 0,
            max_epochs=self.cfg.training.max_epochs,
            max_steps=self.cfg.training.max_steps,
            max_time=self.cfg.training.max_time
        )


        if self.customized_load:
            if self.load_vae:
                load_custom_checkpoint(algo=self.algo.diffusion_model.model,optimizer=None,checkpoint_path=self.ckpt_path)
                load_custom_checkpoint(algo=self.algo.vae,optimizer=None,checkpoint_path=self.vae_path)
            else:
                load_custom_checkpoint(algo=self.algo,optimizer=None,checkpoint_path=self.ckpt_path)

                if self.load_t_to_r:
                    param_list = []
                    for name, para in self.algo.diffusion_model.named_parameters():
                        if 't_' in name and 't_embedder' not in name:
                            print(name)
                            param_list.append(para)

                    it = 0
                    for name, para in self.algo.diffusion_model.named_parameters():
                        if 'r_' in name:
                            para.requires_grad_(False)
                            try:
                                para.copy_(param_list[it].detach().cpu())
                            except:
                                import pdb;pdb.set_trace()
                            para.requires_grad_(True)
                            it += 1

            if self.zero_init_gate:
                for name, para in self.algo.diffusion_model.named_parameters():
                    if 'r_adaLN_modulation' in name:
                        para.requires_grad_(False)
                        para[2*1024:3*1024] = 0
                        para[5*1024:6*1024] = 0
                        para.requires_grad_(True)

            if self.only_tune_refer:
                for name, para in self.algo.diffusion_model.named_parameters():
                    para.requires_grad_(False)
                    if 'r_' in name or 'pose_embedder' in name or 'pose_cond_mlp' in name or 'lora_' in name:
                        para.requires_grad_(True)
                    
            trainer.fit(
                self.algo,
                train_dataloaders=self._build_training_loader(),
                val_dataloaders=self._build_validation_loader(),
                ckpt_path=None,
            )
        else:

            if self.only_tune_refer:
                for name, para in self.algo.diffusion_model.named_parameters():
                    para.requires_grad_(False)
                    if 'r_' in name or 'pose_embedder' in name or 'pose_cond_mlp' in name or 'lora_' in name:
                        para.requires_grad_(True)
            
            trainer.fit(
                self.algo,
                train_dataloaders=self._build_training_loader(),
                val_dataloaders=self._build_validation_loader(),
                ckpt_path=self.ckpt_path,
            )

    def validation(self) -> None:
        """
        All validation happens here
        """
        if not self.algo:
            self.algo = self._build_algo()
        if self.cfg.validation.compile:
            self.algo = torch.compile(self.algo)

        callbacks = []

        trainer = pl.Trainer(
            accelerator="auto",
            logger=self.logger,
            devices="auto",
            num_nodes=self.cfg.num_nodes,
            strategy=DDPStrategy(find_unused_parameters=False) if torch.cuda.device_count() > 1 else "auto",
            callbacks=callbacks,
            # limit_val_batches=self.cfg.validation.limit_batch,
            limit_val_batches=self.cfg.validation.limit_batch,
            precision=self.cfg.validation.precision,
            detect_anomaly=False,  # self.cfg.debug,
            inference_mode=self.cfg.validation.inference_mode,
        )

        if self.customized_load:

            if self.load_vae:
                load_custom_checkpoint(algo=self.algo.diffusion_model.model,optimizer=None,checkpoint_path=self.ckpt_path)
                load_custom_checkpoint(algo=self.algo.vae,optimizer=None,checkpoint_path=self.vae_path)
            else:
                load_custom_checkpoint(algo=self.algo,optimizer=None,checkpoint_path=self.ckpt_path)

                if self.load_t_to_r:
                    param_list = []
                    for name, para in self.algo.diffusion_model.named_parameters():
                        if 't_' in name and 't_embedder' not in name:
                            print(name)
                            param_list.append(para)

                    it = 0
                    for name, para in self.algo.diffusion_model.named_parameters():
                        if 'r_' in name:
                            para.requires_grad_(False)
                            try:
                                para.copy_(param_list[it].detach().cpu())
                            except:
                                import pdb;pdb.set_trace()
                            para.requires_grad_(True)
                            it += 1

            if self.zero_init_gate:
                for name, para in self.algo.diffusion_model.named_parameters():
                    if 'r_adaLN_modulation' in name:
                        para.requires_grad_(False)
                        para[2*1024:3*1024] = 0
                        para[5*1024:6*1024] = 0
                        para.requires_grad_(True)
            
            trainer.validate(
                self.algo,
                dataloaders=self._build_validation_loader(),
                ckpt_path=None,
            )
        else:
            trainer.validate(
                self.algo,
                dataloaders=self._build_validation_loader(),
                ckpt_path=self.ckpt_path,
            )

    def test(self) -> None:
        """
        All testing happens here
        """
        if not self.algo:
            self.algo = self._build_algo()
        if self.cfg.test.compile:
            self.algo = torch.compile(self.algo)

        callbacks = []

        trainer = pl.Trainer(
            accelerator="auto",
            logger=self.logger,
            devices="auto",
            num_nodes=self.cfg.num_nodes,
            strategy=DDPStrategy(find_unused_parameters=False) if torch.cuda.device_count() > 1 else "auto",
            callbacks=callbacks,
            limit_test_batches=self.cfg.test.limit_batch,
            precision=self.cfg.test.precision,
            detect_anomaly=False,  # self.cfg.debug,
        )

        # Only load the checkpoint if only testing. Otherwise, it will have been loaded
        # and further trained during train.
        trainer.test(
            self.algo,
            dataloaders=self._build_test_loader(),
            ckpt_path=self.ckpt_path,
        )
        if not self.algo:
            self.algo = self._build_algo()
        if self.cfg.validation.compile:
            self.algo = torch.compile(self.algo)


    def interactive(self):

        if not self.algo:
            self.algo = self._build_algo()
        if self.cfg.validation.compile:
            self.algo = torch.compile(self.algo)

        if self.customized_load:
            load_custom_checkpoint(algo=self.algo.diffusion_model,optimizer=None,checkpoint_path=self.diffusion_path)
            load_custom_checkpoint(algo=self.algo.vae,optimizer=None,checkpoint_path=self.vae_path)
            load_custom_checkpoint(algo=self.algo.pose_prediction_model,optimizer=None,checkpoint_path=self.pose_predictor_path)
            return self.algo
        else:
            raise NotImplementedError

    def _build_dataset(self, split: str) -> Optional[torch.utils.data.Dataset]:
        if split in ["training", "test", "validation"]:
            return self.compatible_datasets[self.root_cfg.dataset._name](self.root_cfg.dataset, split=split)
        else:
            raise NotImplementedError(f"split '{split}' is not implemented")