File size: 20,417 Bytes
27ca8b3 4170d69 27ca8b3 4170d69 27ca8b3 c09e983 27ca8b3 c09e983 27ca8b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
"""
This repo is forked from [Boyuan Chen](https://boyuan.space/)'s research
template [repo](https://github.com/buoyancy99/research-template).
By its MIT license, you must keep the above sentence in `README.md`
and the `LICENSE` file to credit the author.
"""
from abc import ABC, abstractmethod
from typing import Optional, Union, Literal, List, Dict
import pathlib
import os
import hydra
import torch
from lightning.pytorch.strategies.ddp import DDPStrategy
import lightning.pytorch as pl
from lightning.pytorch.loggers.wandb import WandbLogger
from lightning.pytorch.utilities.types import TRAIN_DATALOADERS
from lightning.pytorch.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_info
from omegaconf import DictConfig
from utils.print_utils import cyan
from utils.distributed_utils import is_rank_zero
from safetensors.torch import load_model
from pathlib import Path
from huggingface_hub import hf_hub_download
torch.set_float32_matmul_precision("high")
def load_custom_checkpoint(algo, optimizer, checkpoint_path):
if not checkpoint_path:
rank_zero_info("No checkpoint path provided, skipping checkpoint loading.")
return None
if not isinstance(checkpoint_path, Path):
checkpoint_path = Path(checkpoint_path)
if "yslan" in str(checkpoint_path):
hf_ckpt = str(checkpoint_path).split('/')
repo_id = '/'.join(hf_ckpt[:2])
file_name = '/'.join(hf_ckpt[2:])
model_path = hf_hub_download(repo_id=repo_id,
filename=file_name)
ckpt = torch.load(model_path, map_location=torch.device('cpu'))
algo.load_state_dict(ckpt['state_dict'], strict=False)
elif checkpoint_path.suffix == ".pt":
ckpt = torch.load(checkpoint_path, weights_only=True)
algo.load_state_dict(ckpt, strict=False)
elif checkpoint_path.suffix == ".ckpt":
ckpt = torch.load(checkpoint_path, map_location=torch.device('cpu'))
algo.load_state_dict(ckpt['state_dict'], strict=False)
elif checkpoint_path.suffix == ".safetensors":
load_model(algo, checkpoint_path, strict=False)
elif os.path.isdir(checkpoint_path):
ckpt_files = [f for f in os.listdir(checkpoint_path) if f.endswith('.ckpt')]
if not ckpt_files:
raise FileNotFoundError("在指定文件夹中未找到任何 .ckpt 文件!")
selected_ckpt = max(ckpt_files)
selected_ckpt_path = os.path.join(checkpoint_path, selected_ckpt)
print(f"加载的 checkpoint 文件为: {selected_ckpt_path}")
ckpt = torch.load(selected_ckpt_path, map_location=torch.device('cpu'))
algo.load_state_dict(ckpt['state_dict'], strict=False)
rank_zero_info("Model weights loaded.")
class BaseExperiment(ABC):
"""
Abstract class for an experiment. This generalizes the pytorch lightning Trainer & lightning Module to more
flexible experiments that doesn't fit in the typical ml loop, e.g. multi-stage reinforcement learning benchmarks.
"""
# each key has to be a yaml file under '[project_root]/configurations/algorithm' without .yaml suffix
compatible_algorithms: Dict = NotImplementedError
def __init__(
self,
root_cfg: DictConfig,
logger: Optional[WandbLogger] = None,
ckpt_path: Optional[Union[str, pathlib.Path]] = None,
) -> None:
"""
Constructor
Args:
cfg: configuration file that contains everything about the experiment
logger: a pytorch-lightning WandbLogger instance
ckpt_path: an optional path to saved checkpoint
"""
super().__init__()
self.root_cfg = root_cfg
self.cfg = root_cfg.experiment
self.debug = root_cfg.debug
self.logger = logger
self.ckpt_path = ckpt_path
self.algo = None
self.customized_load = self.cfg.customized_load
self.load_vae = self.cfg.load_vae
self.load_t_to_r = self.cfg.load_t_to_r
self.zero_init_gate=self.cfg.zero_init_gate
self.only_tune_refer = self.cfg.only_tune_refer
self.diffusion_path = self.cfg.diffusion_path
self.vae_path = self.cfg.vae_path # "/mnt/xiaozeqi/.cache/huggingface/hub/models--Etched--oasis-500m/snapshots/4ca7d2d811f4f0c6fd1d5719bf83f14af3446c0c/vit-l-20.safetensors"
self.pose_predictor_path = self.cfg.pose_predictor_path # "/mnt/xiaozeqi/diffusionforcing/outputs/2025-03-28/16-45-11/checkpoints/epoch0step595000.ckpt"
def _build_algo(self):
"""
Build the lightning module
:return: a pytorch-lightning module to be launched
"""
algo_name = self.root_cfg.algorithm._name
if algo_name not in self.compatible_algorithms:
raise ValueError(
f"Algorithm {algo_name} not found in compatible_algorithms for this Experiment class. "
"Make sure you define compatible_algorithms correctly and make sure that each key has "
"same name as yaml file under '[project_root]/configurations/algorithm' without .yaml suffix"
)
return self.compatible_algorithms[algo_name](self.root_cfg.algorithm)
def exec_task(self, task: str) -> None:
"""
Executing a certain task specified by string. Each task should be a stage of experiment.
In most computer vision / nlp applications, tasks should be just train and test.
In reinforcement learning, you might have more stages such as collecting dataset etc
Args:
task: a string specifying a task implemented for this experiment
"""
if hasattr(self, task) and callable(getattr(self, task)):
if is_rank_zero:
print(cyan("Executing task:"), f"{task} out of {self.cfg.tasks}")
getattr(self, task)()
else:
raise ValueError(
f"Specified task '{task}' not defined for class {self.__class__.__name__} or is not callable."
)
def exec_interactive(self, task: str) -> None:
"""
Executing a certain task specified by string. Each task should be a stage of experiment.
In most computer vision / nlp applications, tasks should be just train and test.
In reinforcement learning, you might have more stages such as collecting dataset etc
Args:
task: a string specifying a task implemented for this experiment
"""
if hasattr(self, task) and callable(getattr(self, task)):
if is_rank_zero:
print(cyan("Executing task:"), f"{task} out of {self.cfg.tasks}")
return getattr(self, task)()
else:
raise ValueError(
f"Specified task '{task}' not defined for class {self.__class__.__name__} or is not callable."
)
class BaseLightningExperiment(BaseExperiment):
"""
Abstract class for pytorch lightning experiments. Useful for computer vision & nlp where main components are
simply models, datasets and train loop.
"""
# each key has to be a yaml file under '[project_root]/configurations/algorithm' without .yaml suffix
compatible_algorithms: Dict = NotImplementedError
# each key has to be a yaml file under '[project_root]/configurations/dataset' without .yaml suffix
compatible_datasets: Dict = NotImplementedError
def _build_trainer_callbacks(self):
callbacks = []
if self.logger:
callbacks.append(LearningRateMonitor("step", True))
def _build_training_loader(self) -> Optional[Union[TRAIN_DATALOADERS, pl.LightningDataModule]]:
train_dataset = self._build_dataset("training")
shuffle = (
False if isinstance(train_dataset, torch.utils.data.IterableDataset) else self.cfg.training.data.shuffle
)
if train_dataset:
return torch.utils.data.DataLoader(
train_dataset,
batch_size=self.cfg.training.batch_size,
num_workers=min(os.cpu_count(), self.cfg.training.data.num_workers),
shuffle=shuffle,
persistent_workers=True,
)
else:
return None
def _build_validation_loader(self) -> Optional[Union[TRAIN_DATALOADERS, pl.LightningDataModule]]:
validation_dataset = self._build_dataset("validation")
shuffle = (
False
if isinstance(validation_dataset, torch.utils.data.IterableDataset)
else self.cfg.validation.data.shuffle
)
if validation_dataset:
return torch.utils.data.DataLoader(
validation_dataset,
batch_size=self.cfg.validation.batch_size,
num_workers=min(os.cpu_count(), self.cfg.validation.data.num_workers),
shuffle=shuffle,
persistent_workers=True,
)
else:
return None
def _build_test_loader(self) -> Optional[Union[TRAIN_DATALOADERS, pl.LightningDataModule]]:
test_dataset = self._build_dataset("test")
shuffle = False if isinstance(test_dataset, torch.utils.data.IterableDataset) else self.cfg.test.data.shuffle
if test_dataset:
return torch.utils.data.DataLoader(
test_dataset,
batch_size=self.cfg.test.batch_size,
num_workers=min(os.cpu_count(), self.cfg.test.data.num_workers),
shuffle=shuffle,
persistent_workers=True,
)
else:
return None
def training(self) -> None:
"""
All training happens here
"""
if not self.algo:
self.algo = self._build_algo()
if self.cfg.training.compile:
self.algo = torch.compile(self.algo)
callbacks = []
if self.logger:
callbacks.append(LearningRateMonitor("step", True))
if "checkpointing" in self.cfg.training:
callbacks.append(
ModelCheckpoint(
pathlib.Path(hydra.core.hydra_config.HydraConfig.get()["runtime"]["output_dir"]) / "checkpoints",
**self.cfg.training.checkpointing,
)
)
# TODO do not upload checkpoint to wandb
# trainer = pl.Trainer(
# accelerator="auto",
# logger=self.logger if self.logger else False,
# devices=torch.cuda.device_count(),
# num_nodes=self.cfg.num_nodes,
# strategy=DDPStrategy(find_unused_parameters=True) if torch.cuda.device_count() > 1 else "auto",
# callbacks=callbacks,
# gradient_clip_val=self.cfg.training.optim.gradient_clip_val,
# val_check_interval=self.cfg.validation.val_every_n_step,
# limit_val_batches=self.cfg.validation.limit_batch,
# check_val_every_n_epoch=self.cfg.validation.val_every_n_epoch,
# accumulate_grad_batches=self.cfg.training.optim.accumulate_grad_batches,
# precision=self.cfg.training.precision,
# detect_anomaly=False, # self.cfg.debug,
# num_sanity_val_steps=int(self.cfg.debug),
# max_epochs=self.cfg.training.max_epochs,
# max_steps=self.cfg.training.max_steps,
# max_time=self.cfg.training.max_time,
# )
trainer = pl.Trainer(
accelerator="auto",
devices="auto", # 自动选择设备
strategy=DDPStrategy(find_unused_parameters=True) if torch.cuda.device_count() > 1 else "auto",
logger=self.logger or False, # 简化写法
callbacks=callbacks,
gradient_clip_val=self.cfg.training.optim.gradient_clip_val or 0.0, # 确保默认值
val_check_interval=self.cfg.validation.val_every_n_step if self.cfg.validation.val_every_n_step else None,
limit_val_batches=self.cfg.validation.limit_batch,
check_val_every_n_epoch=self.cfg.validation.val_every_n_epoch if not self.cfg.validation.val_every_n_step else None,
accumulate_grad_batches=self.cfg.training.optim.accumulate_grad_batches or 1, # 默认累积为1
precision=self.cfg.training.precision or 32, # 默认32位精度
detect_anomaly=False, # 默认关闭异常检测
num_sanity_val_steps=int(self.cfg.debug) if self.cfg.debug else 0,
max_epochs=self.cfg.training.max_epochs,
max_steps=self.cfg.training.max_steps,
max_time=self.cfg.training.max_time
)
if self.customized_load:
if self.load_vae:
load_custom_checkpoint(algo=self.algo.diffusion_model.model,optimizer=None,checkpoint_path=self.ckpt_path)
load_custom_checkpoint(algo=self.algo.vae,optimizer=None,checkpoint_path=self.vae_path)
else:
load_custom_checkpoint(algo=self.algo,optimizer=None,checkpoint_path=self.ckpt_path)
if self.load_t_to_r:
param_list = []
for name, para in self.algo.diffusion_model.named_parameters():
if 't_' in name and 't_embedder' not in name:
print(name)
param_list.append(para)
it = 0
for name, para in self.algo.diffusion_model.named_parameters():
if 'r_' in name:
para.requires_grad_(False)
try:
para.copy_(param_list[it].detach().cpu())
except:
import pdb;pdb.set_trace()
para.requires_grad_(True)
it += 1
if self.zero_init_gate:
for name, para in self.algo.diffusion_model.named_parameters():
if 'r_adaLN_modulation' in name:
para.requires_grad_(False)
para[2*1024:3*1024] = 0
para[5*1024:6*1024] = 0
para.requires_grad_(True)
if self.only_tune_refer:
for name, para in self.algo.diffusion_model.named_parameters():
para.requires_grad_(False)
if 'r_' in name or 'pose_embedder' in name or 'pose_cond_mlp' in name or 'lora_' in name:
para.requires_grad_(True)
trainer.fit(
self.algo,
train_dataloaders=self._build_training_loader(),
val_dataloaders=self._build_validation_loader(),
ckpt_path=None,
)
else:
if self.only_tune_refer:
for name, para in self.algo.diffusion_model.named_parameters():
para.requires_grad_(False)
if 'r_' in name or 'pose_embedder' in name or 'pose_cond_mlp' in name or 'lora_' in name:
para.requires_grad_(True)
trainer.fit(
self.algo,
train_dataloaders=self._build_training_loader(),
val_dataloaders=self._build_validation_loader(),
ckpt_path=self.ckpt_path,
)
def validation(self) -> None:
"""
All validation happens here
"""
if not self.algo:
self.algo = self._build_algo()
if self.cfg.validation.compile:
self.algo = torch.compile(self.algo)
callbacks = []
trainer = pl.Trainer(
accelerator="auto",
logger=self.logger,
devices="auto",
num_nodes=self.cfg.num_nodes,
strategy=DDPStrategy(find_unused_parameters=False) if torch.cuda.device_count() > 1 else "auto",
callbacks=callbacks,
# limit_val_batches=self.cfg.validation.limit_batch,
limit_val_batches=self.cfg.validation.limit_batch,
precision=self.cfg.validation.precision,
detect_anomaly=False, # self.cfg.debug,
inference_mode=self.cfg.validation.inference_mode,
)
if self.customized_load:
if self.load_vae:
load_custom_checkpoint(algo=self.algo.diffusion_model.model,optimizer=None,checkpoint_path=self.ckpt_path)
load_custom_checkpoint(algo=self.algo.vae,optimizer=None,checkpoint_path=self.vae_path)
else:
load_custom_checkpoint(algo=self.algo,optimizer=None,checkpoint_path=self.ckpt_path)
if self.load_t_to_r:
param_list = []
for name, para in self.algo.diffusion_model.named_parameters():
if 't_' in name and 't_embedder' not in name:
print(name)
param_list.append(para)
it = 0
for name, para in self.algo.diffusion_model.named_parameters():
if 'r_' in name:
para.requires_grad_(False)
try:
para.copy_(param_list[it].detach().cpu())
except:
import pdb;pdb.set_trace()
para.requires_grad_(True)
it += 1
if self.zero_init_gate:
for name, para in self.algo.diffusion_model.named_parameters():
if 'r_adaLN_modulation' in name:
para.requires_grad_(False)
para[2*1024:3*1024] = 0
para[5*1024:6*1024] = 0
para.requires_grad_(True)
trainer.validate(
self.algo,
dataloaders=self._build_validation_loader(),
ckpt_path=None,
)
else:
trainer.validate(
self.algo,
dataloaders=self._build_validation_loader(),
ckpt_path=self.ckpt_path,
)
def test(self) -> None:
"""
All testing happens here
"""
if not self.algo:
self.algo = self._build_algo()
if self.cfg.test.compile:
self.algo = torch.compile(self.algo)
callbacks = []
trainer = pl.Trainer(
accelerator="auto",
logger=self.logger,
devices="auto",
num_nodes=self.cfg.num_nodes,
strategy=DDPStrategy(find_unused_parameters=False) if torch.cuda.device_count() > 1 else "auto",
callbacks=callbacks,
limit_test_batches=self.cfg.test.limit_batch,
precision=self.cfg.test.precision,
detect_anomaly=False, # self.cfg.debug,
)
# Only load the checkpoint if only testing. Otherwise, it will have been loaded
# and further trained during train.
trainer.test(
self.algo,
dataloaders=self._build_test_loader(),
ckpt_path=self.ckpt_path,
)
if not self.algo:
self.algo = self._build_algo()
if self.cfg.validation.compile:
self.algo = torch.compile(self.algo)
def interactive(self):
if not self.algo:
self.algo = self._build_algo()
if self.cfg.validation.compile:
self.algo = torch.compile(self.algo)
if self.customized_load:
load_custom_checkpoint(algo=self.algo.diffusion_model,optimizer=None,checkpoint_path=self.diffusion_path)
load_custom_checkpoint(algo=self.algo.vae,optimizer=None,checkpoint_path=self.vae_path)
load_custom_checkpoint(algo=self.algo.pose_prediction_model,optimizer=None,checkpoint_path=self.pose_predictor_path)
return self.algo
else:
raise NotImplementedError
def _build_dataset(self, split: str) -> Optional[torch.utils.data.Dataset]:
if split in ["training", "test", "validation"]:
return self.compatible_datasets[self.root_cfg.dataset._name](self.root_cfg.dataset, split=split)
else:
raise NotImplementedError(f"split '{split}' is not implemented")
|