Spaces:
Runtime error
Runtime error
File size: 9,856 Bytes
e90b704 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
from fastapi import FastAPI, HTTPException, Query, UploadFile, File, Form
from fastapi.responses import FileResponse
from pydantic import BaseModel
import os, sys
import gc, torch
from loguru import logger
import asyncio
from typing import Optional
sys.path.append("./")
app = FastAPI()
tts = None
cosyvoice = None
edgetts = None
vits = None
class TTSRequest(BaseModel):
text: str = '你好,我是Linly-Talker。'
voice: str = 'zh-CN-XiaoxiaoNeural'
rate: float = 1.0
volume: float = 1.0
pitch: float = 1.0
speed_factor: float = 1.0
am: str = 'FastSpeech2'
voc: str = 'PWGan'
lang: str = 'zh'
male: bool = False
prompt_text: str = ''
prompt_language: str = '中文'
ref_audio: str = ''
ref_text: str = ''
ref_language: str = '中文'
cut_method: str = '凑四句一切'
cosyvoice_mode: str = '预训练音色'
sft_dropdown: str = '中文男'
seed: int = 42
tts_method: str = 'EdgeTTS'
save_path: str = 'answer.wav'
@app.post("/tts_change_model/")
async def change_model(model_name: str = Query(..., description="要加载的TTS模型名称")):
global tts, cosyvoice, edgetts, vits
await clear_memory()
try:
if model_name == 'EdgeTTS':
from TTS import EdgeTTS
if edgetts is None:
edgetts = EdgeTTS()
if edgetts.network:
logger.info("EdgeTTS模型加载成功")
else:
logger.warning("EdgeTTS模型加载失败,请检查网络连接")
raise HTTPException(status_code=503, detail="EdgeTTS模型加载失败,请检查网络连接")
elif model_name == 'PaddleTTS':
from TTS import PaddleTTS
if tts is None:
tts = PaddleTTS()
logger.info("PaddleTTS模型加载成功")
elif model_name == 'GPT-SoVITS克隆声音':
gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
sovits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth"
if vits is None:
from VITS import GPT_SoVITS
vits = GPT_SoVITS()
vits.load_model(gpt_path, sovits_path)
logger.info("GPT-SoVITS模型加载成功")
elif model_name == 'CosyVoice-SFT模式':
from VITS import CosyVoiceTTS
model_path = 'checkpoints/CosyVoice_ckpt/CosyVoice-300M-SFT'
if cosyvoice is None:
cosyvoice = CosyVoiceTTS(model_path)
logger.info("CosyVoice-SFT模式模型加载成功")
elif model_name == 'CosyVoice-克隆翻译模式':
from VITS import CosyVoiceTTS
model_path = 'checkpoints/CosyVoice_ckpt/CosyVoice-300M'
if cosyvoice is None:
cosyvoice = CosyVoiceTTS(model_path)
logger.info("CosyVoice-克隆翻译模式模型加载成功")
else:
logger.warning(f"未知的TTS模型: {model_name}")
raise HTTPException(status_code=400, detail=f"未知的TTS模型: {model_name}")
except ImportError as e:
logger.error(f"导入模型 {model_name} 失败: {e}")
raise HTTPException(status_code=500, detail=f"导入模型 {model_name} 失败: {e}")
except Exception as e:
logger.error(f"{model_name} 模型加载失败: {e}")
raise HTTPException(status_code=500, detail=f"{model_name} 模型加载失败: {e}")
return {"message": f"{model_name} 模型加载成功"}
async def clear_memory():
logger.info("清理显存资源")
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
logger.info(f"显存使用情况: {torch.cuda.memory_allocated() / (1024 ** 2):.2f} MB")
def save_upload_file(upload_file: UploadFile, destination: str) -> str:
"""保存上传的文件到指定路径"""
with open(destination, "wb") as buffer:
buffer.write(upload_file.file.read())
return destination
def predict_edge_tts(request: TTSRequest):
global edgetts
if edgetts is None:
raise HTTPException(status_code=400, detail="EdgeTTS 模型未加载")
if not edgetts.network:
raise HTTPException(status_code=503, detail="EdgeTTS 模型网络问题")
try:
edgetts.predict(request.text, request.voice, request.rate, request.volume, request.pitch, request.save_path, 'answer.vtt')
except Exception as e:
os.system(f'edge-tts --text "{request.text}" --voice {request.voice} --write-media {request.save_path} --write-subtitles answer.vtt')
return request.save_path
def predict_paddle_tts(request: TTSRequest):
global tts
if tts is None:
raise HTTPException(status_code=400, detail="PaddleTTS 模型未加载")
try:
tts.predict(request.text, request.am, request.voc, lang=request.lang, male=request.male, save_path=request.save_path)
except Exception as e:
raise HTTPException(status_code=500, detail=f"PaddleTTS 预测失败: {e}")
return request.save_path
def predict_gpt_sovits(request: TTSRequest):
global vits
if vits is None:
raise HTTPException(status_code=400, detail="GPT-SoVITS 模型未加载")
try:
vits.predict(ref_wav_path=request.ref_audio, prompt_text=request.prompt_text,
prompt_language=request.prompt_language, text=request.text,
text_language=request.ref_language, how_to_cut=request.cut_method,
save_path=request.save_path)
except Exception as e:
raise HTTPException(status_code=500, detail=f"GPT-SoVITS 预测失败: {e}")
return request.save_path
def predict_cosyvoice(request: TTSRequest):
global cosyvoice
if cosyvoice is None:
raise HTTPException(status_code=400, detail="CosyVoice 模型未加载")
prompt_wav = None
if request.ref_audio:
prompt_wav = request.ref_audio
if request.cosyvoice_mode in ['3s极速复刻', '跨语种复刻'] and not prompt_wav:
raise HTTPException(status_code=400, detail="选择的模式需要提供 prompt 音频")
try:
if request.cosyvoice_mode == '预训练音色':
output = cosyvoice.predict_sft(request.text, request.sft_dropdown, speed_factor=request.speed_factor, save_path=request.save_path)
elif request.cosyvoice_mode == '3s极速复刻':
output = cosyvoice.predict_zero_shot(request.text, request.ref_text, prompt_wav, speed_factor=request.speed_factor, save_path=request.save_path)
elif request.cosyvoice_mode == '跨语种复刻':
output = cosyvoice.predict_cross_lingual(request.text, prompt_wav, speed_factor=request.speed_factor, save_path=request.save_path)
except Exception as e:
raise HTTPException(status_code=500, detail=f"CosyVoice 预测失败: {e}")
return output
@app.post("/tts_response/")
async def tts_response(
text: str = Form('你好,我是Linly-Talker。'),
voice: str = Form('zh-CN-XiaoxiaoNeural'),
rate: float = Form(1.0),
volume: float = Form(1.0),
pitch: float = Form(1.0),
speed_factor: float = Form(1.0),
am: str = Form('FastSpeech2'),
voc: str = Form('PWGan'),
lang: str = Form('zh'),
male: bool = Form(False),
prompt_text: str = Form(''),
prompt_language: str = Form('中文'),
ref_text: str = Form(''),
ref_language: str = Form('中文'),
cut_method: str = Form('凑四句一切'),
cosyvoice_mode: str = Form('预训练音色'),
sft_dropdown: str = Form('中文男'),
seed: int = Form(42),
tts_method: str = Form('EdgeTTS'),
save_path: str = Form('answer.wav'),
ref_audio: Optional[UploadFile] = File(None)
):
ref_audio_path = None
if ref_audio:
# 保存上传的音频文件
ref_audio_path = save_upload_file(ref_audio, "uploaded_ref_audio.wav")
request = TTSRequest(
text=text,
voice=voice,
rate=rate,
volume=volume,
pitch=pitch,
speed_factor=speed_factor,
am=am,
voc=voc,
lang=lang,
male=male,
prompt_text=prompt_text,
prompt_language=prompt_language,
ref_audio=ref_audio_path if ref_audio else '',
ref_text=ref_text,
ref_language=ref_language,
cut_method=cut_method,
cosyvoice_mode=cosyvoice_mode,
sft_dropdown=sft_dropdown,
seed=seed,
tts_method=tts_method,
save_path=save_path
)
# print(request)
if not request.text:
raise HTTPException(status_code=400, detail="文本内容为空")
try:
if request.tts_method == 'EdgeTTS':
file_path = predict_edge_tts(request)
elif request.tts_method == 'PaddleTTS':
file_path = predict_paddle_tts(request)
elif request.tts_method == 'GPT-SoVITS克隆声音':
file_path = predict_gpt_sovits(request)
elif "CosyVoice" in request.tts_method:
file_path = predict_cosyvoice(request)
else:
raise HTTPException(status_code=400, detail=f"未知的TTS方法: {request.tts_method}")
if os.path.exists(request.save_path):
return FileResponse(file_path, media_type='audio/wav', filename=request.save_path)
else:
logger.error(f"处理TTS请求失败: {e}")
raise HTTPException(status_code=404, detail="Audio file not found")
except Exception as e:
raise HTTPException(status_code=500, detail=f"处理TTS请求失败: {e}")
# finally:
# if ref_audio:
# os.remove(ref_audio_path)
# os.remove(request.save_path)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8001)
|