File size: 21,319 Bytes
1ca9e3b 6a0d13c 1ca9e3b 6a0d13c 1ca9e3b a907ad0 1ca9e3b 3912684 1ca9e3b b1faf64 1ca9e3b 3912684 1ca9e3b 3912684 1ca9e3b a594e78 1ca9e3b a594e78 1ca9e3b 6a0d13c 1ca9e3b b9b9d9b 1ca9e3b f73c268 1ca9e3b b9b9d9b 8f98bd6 b9b9d9b 1ca9e3b b9b9d9b 1ca9e3b b9b9d9b 1ca9e3b b9b9d9b 1ca9e3b b9b9d9b 1ca9e3b b9b9d9b 1ca9e3b b9b9d9b 1ca9e3b b9b9d9b 585504b b9b9d9b a594e78 1ca9e3b b1faf64 6a0d13c b1faf64 6a0d13c b1faf64 3912684 b1faf64 b9b9d9b b1faf64 a594e78 b1faf64 1ca9e3b 6a0d13c 1ca9e3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 |
import cv2
import numpy as np
import types
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
from PIL import Image
from torch import nn
import spaces
from demo.modify_llama import *
class AttentionGuidedCAM:
def __init__(self, model, register=True):
self.model = model
self.gradients = []
self.activations = []
self.hooks = []
if register:
self._register_hooks()
def _register_hooks(self):
for layer in self.target_layers:
self.hooks.append(layer.register_forward_hook(self._forward_hook))
self.hooks.append(layer.register_backward_hook(self._backward_hook))
def _forward_hook(self, module, input, output):
self.activations.append(output)
def _backward_hook(self, module, grad_in, grad_out):
self.gradients.append(grad_out[0])
def remove_hooks(self):
for hook in self.hooks:
hook.remove()
@spaces.GPU(duration=120)
def generate_cam(self, input_tensor, class_idx=None):
raise NotImplementedError
class AttentionGuidedCAMClip(AttentionGuidedCAM):
def __init__(self, model, target_layers):
self.target_layers = target_layers
super().__init__(model)
@spaces.GPU(duration=120)
def generate_cam(self, input_tensor, class_idx=None, visual_pooling_method="CLS"):
""" Generates Grad-CAM heatmap for ViT. """
# Forward pass
output_full = self.model(**input_tensor)
if class_idx is None:
class_idx = torch.argmax(output_full.logits, dim=1).item()
if visual_pooling_method == "CLS":
output = output_full.image_embeds
elif visual_pooling_method == "avg":
output = self.model.visual_projection(output_full.vision_model_output.last_hidden_state).mean(dim=1)
else:
# project -> pooling
output, _ = self.model.visual_projection(output_full.vision_model_output.last_hidden_state).max(dim=1)
# pooling -> project
# output_mx, _ = output_full.vision_model_output.last_hidden_state.max(dim=1)
# output = self.model.visual_projection(output_mx)
output.backward(output_full.text_embeds[class_idx:class_idx+1], retain_graph=True)
# Aggregate activations and gradients from ALL layers
self.model.zero_grad()
cam_sum = None
for act, grad in zip(self.activations, self.gradients):
# act = torch.sigmoid(act[0])
act = F.relu(act[0])
grad_weights = grad.mean(dim=-1, keepdim=True)
print("act shape", act.shape)
print("grad_weights shape", grad_weights.shape)
# cam = (act * grad_weights).sum(dim=-1) # Weighted activation map
cam, _ = (act * grad_weights).max(dim=-1)
# cam, _ = grad_weights.max(dim=-1)
# cam = self.normalize(cam)
print("cam_shape: ", cam.shape)
# Sum across all layers
if cam_sum is None:
cam_sum = cam
else:
cam_sum += cam
# Normalize
cam_sum = F.relu(cam_sum)
# thresholding
cam_sum = cam_sum.to(torch.float32)
percentile = torch.quantile(cam_sum, 0.2) # Adjust threshold dynamically
cam_sum[cam_sum < percentile] = 0
# Reshape
print("cam_sum shape: ", cam_sum.shape)
cam_sum = cam_sum[0, 1:]
num_patches = cam_sum.shape[-1] # Last dimension of CAM output
grid_size = int(num_patches ** 0.5)
print(f"Detected grid size: {grid_size}x{grid_size}")
cam_sum = cam_sum.view(grid_size, grid_size).detach()
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
return cam_sum, output_full, grid_size
class AttentionGuidedCAMJanus(AttentionGuidedCAM):
def __init__(self, model, target_layers):
self.target_layers = target_layers
super().__init__(model)
self._modify_layers()
self._register_hooks_activations()
def _modify_layers(self):
for layer in self.target_layers:
setattr(layer, "attn_gradients", None)
setattr(layer, "attention_map", None)
layer.save_attn_gradients = types.MethodType(save_attn_gradients, layer)
layer.get_attn_gradients = types.MethodType(get_attn_gradients, layer)
layer.save_attn_map = types.MethodType(save_attn_map, layer)
layer.get_attn_map = types.MethodType(get_attn_map, layer)
def _forward_activate_hooks(self, module, input, output):
attn_output, attn_weights = output # Unpack outputs
module.save_attn_map(attn_weights)
attn_weights.register_hook(module.save_attn_gradients)
def _register_hooks_activations(self):
for layer in self.target_layers:
if hasattr(layer, "q_proj"): # is an attention layer
self.hooks.append(layer.register_forward_hook(self._forward_activate_hooks))
@spaces.GPU(duration=120)
def generate_cam(self, input_tensor, tokenizer, temperature, top_p, class_idx=None, visual_pooling_method="CLS", focus="Visual Encoder"):
# Forward pass
image_embeddings, inputs_embeddings, outputs = self.model(input_tensor, tokenizer, temperature, top_p)
input_ids = input_tensor.input_ids
if focus == "Visual Encoder":
# Pooling
if visual_pooling_method == "CLS":
image_embeddings_pooled = image_embeddings[:, 0, :]
elif visual_pooling_method == "avg":
image_embeddings_pooled = image_embeddings[:, 1:, :].mean(dim=1) # end of image: 618
elif visual_pooling_method == "max":
image_embeddings_pooled, _ = image_embeddings[:, 1:, :].max(dim=1)
print("image_embeddings_shape: ", image_embeddings_pooled.shape)
inputs_embeddings_pooled = inputs_embeddings[:, 620: -4].mean(dim=1)
self.model.zero_grad()
image_embeddings_pooled.backward(inputs_embeddings_pooled, retain_graph=True)
cam_sum = None
for act, grad in zip(self.activations, self.gradients):
# act = torch.sigmoid(act)
act = F.relu(act[0])
# Compute mean of gradients
print("grad shape:", grad.shape)
grad_weights = grad.mean(dim=-1, keepdim=True)
print("act shape", act.shape)
print("grad_weights shape", grad_weights.shape)
cam, _ = (act * grad_weights).max(dim=-1)
print(cam.shape)
# Sum across all layers
if cam_sum is None:
cam_sum = cam
else:
cam_sum += cam
# Normalize
cam_sum = F.relu(cam_sum)
# thresholding
cam_sum = cam_sum.to(torch.float32)
percentile = torch.quantile(cam_sum, 0.2) # Adjust threshold dynamically
cam_sum[cam_sum < percentile] = 0
# Reshape
# if visual_pooling_method == "CLS":
cam_sum = cam_sum[0, 1:]
print("cam_sum shape: ", cam_sum.shape)
num_patches = cam_sum.shape[-1] # Last dimension of CAM output
grid_size = int(num_patches ** 0.5)
print(f"Detected grid size: {grid_size}x{grid_size}")
cam_sum = cam_sum.view(grid_size, grid_size)
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
cam_sum = cam_sum.detach().to("cpu")
return cam_sum, grid_size
elif focus == "Language Model":
self.model.zero_grad()
loss = outputs.logits.max(dim=-1).values.sum()
loss.backward()
self.activations = [layer.get_attn_map() for layer in self.target_layers]
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers]
cam_sum = None
for act, grad in zip(self.activations, self.gradients):
# act = torch.sigmoid(act)
print("act_shape:", act.shape)
# print("act1_shape:", act[1].shape)
act = act.mean(dim=1)
# Compute mean of gradients
print("grad_shape:", grad.shape)
grad_weights = F.relu(grad.mean(dim=1))
# cam, _ = (act * grad_weights).max(dim=-1)
# cam = act * grad_weights
cam = act * grad_weights
print(cam.shape)
# Sum across all layers
if cam_sum is None:
cam_sum = cam
else:
cam_sum += cam
# Normalize
cam_sum = F.relu(cam_sum)
# cam_sum = cam_sum - cam_sum.min()
# cam_sum = cam_sum / cam_sum.max()
# thresholding
cam_sum = cam_sum.to(torch.float32)
percentile = torch.quantile(cam_sum, 0.2) # Adjust threshold dynamically
cam_sum[cam_sum < percentile] = 0
# Reshape
# if visual_pooling_method == "CLS":
# cam_sum = cam_sum[0, 1:]
# cam_sum shape: [1, seq_len, seq_len]
cam_sum_lst = []
cam_sum_raw = cam_sum
start = 620
for i in range(start, cam_sum_raw.shape[1]):
cam_sum = cam_sum_raw[:, i, :] # shape: [1: seq_len]
cam_sum = cam_sum[input_tensor.images_seq_mask].unsqueeze(0) # shape: [1, 576]
print("cam_sum shape: ", cam_sum.shape)
num_patches = cam_sum.shape[-1] # Last dimension of CAM output
grid_size = int(num_patches ** 0.5)
print(f"Detected grid size: {grid_size}x{grid_size}")
# Fix the reshaping step dynamically
cam_sum = cam_sum.view(grid_size, grid_size)
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
cam_sum = cam_sum.detach().to("cpu")
cam_sum_lst.append(cam_sum)
return cam_sum_lst, grid_size, start
# Aggregate activations and gradients from ALL layers
class AttentionGuidedCAMLLaVA(AttentionGuidedCAM):
def __init__(self, model, target_layers):
self.target_layers = target_layers
super().__init__(model, register=False)
self._modify_layers()
self._register_hooks_activations()
def _modify_layers(self):
for layer in self.target_layers:
setattr(layer, "attn_gradients", None)
setattr(layer, "attention_map", None)
layer.save_attn_gradients = types.MethodType(save_attn_gradients, layer)
layer.get_attn_gradients = types.MethodType(get_attn_gradients, layer)
layer.save_attn_map = types.MethodType(save_attn_map, layer)
layer.get_attn_map = types.MethodType(get_attn_map, layer)
def _forward_activate_hooks(self, module, input, output):
attn_output, attn_weights = output # Unpack outputs
attn_weights.requires_grad_()
module.save_attn_map(attn_weights)
attn_weights.register_hook(module.save_attn_gradients)
def _register_hooks_activations(self):
for layer in self.target_layers:
if hasattr(layer, "q_proj"): # is an attention layer
self.hooks.append(layer.register_forward_hook(self._forward_activate_hooks))
@spaces.GPU(duration=120)
def generate_cam(self, inputs, tokenizer, temperature, top_p, class_idx=None, visual_pooling_method="CLS", focus="Visual Encoder"):
# Forward pass
outputs_raw = self.model(**inputs, num_logits_to_keep=1)
self.model.zero_grad()
print("outputs_raw", outputs_raw)
loss = outputs_raw.logits.max(dim=-1).values.sum()
loss.backward()
# get image masks
image_mask = []
last = 0
for i in range(inputs["input_ids"].shape[1]):
decoded_token = tokenizer.decode(inputs["input_ids"][0][i].item())
if (decoded_token == "<image>"):
image_mask.append(True)
last = i
else:
image_mask.append(False)
# Aggregate activations and gradients from ALL layers
self.activations = [layer.get_attn_map() for layer in self.target_layers]
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers]
cam_sum = None
# Ver 2
for act, grad in zip(self.activations, self.gradients):
print("act shape", act.shape)
print("grad shape", grad.shape)
grad = F.relu(grad)
cam = act * grad # shape: [1, heads, seq_len, seq_len]
cam = cam.sum(dim=1) # shape: [1, seq_len, seq_len]
# Sum across all layers
if cam_sum is None:
cam_sum = cam
else:
cam_sum += cam
cam_sum = F.relu(cam_sum)
cam_sum = cam_sum.to(torch.float32)
# thresholding
# percentile = torch.quantile(cam_sum, 0.4) # Adjust threshold dynamically
# cam_sum[cam_sum < percentile] = 0
# Reshape
# if visual_pooling_method == "CLS":
# cam_sum = cam_sum[0, 1:]
# cam_sum shape: [1, seq_len, seq_len]
cam_sum_lst = []
cam_sum_raw = cam_sum
start_idx = last + 1
for i in range(start_idx, cam_sum_raw.shape[1]):
cam_sum = cam_sum_raw[0, i, :] # shape: [1: seq_len]
cam_sum = cam_sum[image_mask].unsqueeze(0) # shape: [1, 1024]
print("cam_sum shape: ", cam_sum.shape)
num_patches = cam_sum.shape[-1] # Last dimension of CAM output
grid_size = int(num_patches ** 0.5)
print(f"Detected grid size: {grid_size}x{grid_size}")
cam_sum = cam_sum.view(grid_size, grid_size)
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
cam_sum_lst.append(cam_sum)
return cam_sum_lst, grid_size, start_idx
class AttentionGuidedCAMChartGemma(AttentionGuidedCAM):
def __init__(self, model, target_layers):
self.target_layers = target_layers
super().__init__(model, register=False)
self._modify_layers()
self._register_hooks_activations()
def _modify_layers(self):
for layer in self.target_layers:
setattr(layer, "attn_gradients", None)
setattr(layer, "attention_map", None)
layer.save_attn_gradients = types.MethodType(save_attn_gradients, layer)
layer.get_attn_gradients = types.MethodType(get_attn_gradients, layer)
layer.save_attn_map = types.MethodType(save_attn_map, layer)
layer.get_attn_map = types.MethodType(get_attn_map, layer)
def _forward_activate_hooks(self, module, input, output):
attn_output, attn_weights = output # Unpack outputs
print("attn_output shape:", attn_output.shape)
print("attn_weights shape:", attn_weights.shape)
module.save_attn_map(attn_weights)
attn_weights.register_hook(module.save_attn_gradients)
def _register_hooks_activations(self):
for layer in self.target_layers:
if hasattr(layer, "q_proj"): # is an attention layer
self.hooks.append(layer.register_forward_hook(self._forward_activate_hooks))
@spaces.GPU(duration=120)
def generate_cam(self, inputs, tokenizer, temperature, top_p, class_idx=None, visual_pooling_method="CLS", focus="Visual Encoder"):
# Forward pass
outputs_raw = self.model(**inputs)
self.model.zero_grad()
# print(outputs_raw)
loss = outputs_raw.logits.max(dim=-1).values.sum()
loss.backward()
# get image masks
image_mask = []
last = 0
for i in range(inputs["input_ids"].shape[1]):
decoded_token = tokenizer.decode(inputs["input_ids"][0][i].item())
if (decoded_token == "<image>"):
image_mask.append(True)
last = i
else:
image_mask.append(False)
# Aggregate activations and gradients from ALL layers
self.activations = [layer.get_attn_map() for layer in self.target_layers]
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers]
cam_sum = None
# Ver 1
# for act, grad in zip(self.activations, self.gradients):
# # act = torch.sigmoid(act)
# print("act:", act)
# print(len(act))
# print("act_shape:", act.shape)
# # print("act1_shape:", act[1].shape)
# act = F.relu(act.mean(dim=1))
# # Compute mean of gradients
# print("grad:", grad)
# print(len(grad))
# print("grad_shape:", grad.shape)
# grad_weights = grad.mean(dim=1)
# print("act shape", act.shape)
# print("grad_weights shape", grad_weights.shape)
# cam = act * grad_weights
# # cam = act
# print(cam.shape)
# # Sum across all layers
# if cam_sum is None:
# cam_sum = cam
# else:
# cam_sum += cam
# Ver 2
for act, grad in zip(self.activations, self.gradients):
print("act shape", act.shape)
print("grad shape", grad.shape)
grad = F.relu(grad)
cam = act * grad # shape: [1, heads, seq_len, seq_len]
cam = cam.sum(dim=1) # shape: [1, seq_len, seq_len]
# Sum across all layers
if cam_sum is None:
cam_sum = cam
else:
cam_sum += cam
cam_sum = F.relu(cam_sum)
cam_sum = cam_sum.to(torch.float32)
# cam_sum shape: [1, seq_len, seq_len]
cam_sum_lst = []
cam_sum_raw = cam_sum
start_idx = last + 1
for i in range(start_idx, cam_sum_raw.shape[1]):
cam_sum = cam_sum_raw[0, i, :] # shape: [1: seq_len]
# cam_sum_min = cam_sum.min()
# cam_sum_max = cam_sum.max()
# cam_sum = (cam_sum - cam_sum_min) / (cam_sum_max - cam_sum_min)
cam_sum = cam_sum[image_mask].unsqueeze(0) # shape: [1, 1024]
print("cam_sum shape: ", cam_sum.shape)
num_patches = cam_sum.shape[-1] # Last dimension of CAM output
grid_size = int(num_patches ** 0.5)
print(f"Detected grid size: {grid_size}x{grid_size}")
# Fix the reshaping step dynamically
cam_sum = cam_sum.view(grid_size, grid_size)
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
cam_sum_lst.append(cam_sum)
return cam_sum_lst, grid_size, start_idx
def generate_gradcam(
cam,
image,
size = (384, 384),
alpha=0.5,
colormap=cv2.COLORMAP_JET,
aggregation='mean',
normalize=True
):
"""
Generates a Grad-CAM heatmap overlay on top of the input image.
Parameters:
attributions (torch.Tensor): A tensor of shape (C, H, W) representing the
intermediate activations or gradients at the target layer.
image (PIL.Image): The original image.
alpha (float): The blending factor for the heatmap overlay (default 0.5).
colormap (int): OpenCV colormap to apply (default cv2.COLORMAP_JET).
aggregation (str): How to aggregate across channels; either 'mean' or 'sum'.
Returns:
PIL.Image: The image overlaid with the Grad-CAM heatmap.
"""
# print("Generating Grad-CAM with shape:", cam.shape)
if normalize:
cam_min, cam_max = cam.min(), cam.max()
cam = cam - cam_min
cam = cam / (cam_max - cam_min)
# Convert tensor to numpy array
cam = torch.nn.functional.interpolate(cam.unsqueeze(0).unsqueeze(0), size=size, mode='bilinear').squeeze()
cam_np = cam.squeeze().detach().cpu().numpy()
# Apply Gaussian blur for smoother heatmaps
cam_np = cv2.GaussianBlur(cam_np, (5,5), sigmaX=0.8)
# Resize the cam to match the image size
width, height = size
cam_resized = cv2.resize(cam_np, (width, height))
# Convert the normalized map to a heatmap (0-255 uint8)
heatmap = np.uint8(255 * cam_resized)
heatmap = cv2.applyColorMap(heatmap, colormap)
# OpenCV produces heatmaps in BGR, so convert to RGB for consistency
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
# Convert original image to a numpy array
image_np = np.array(image)
image_np = cv2.resize(image_np, (width, height))
# Blend the heatmap with the original image
overlay = cv2.addWeighted(image_np, 1 - alpha, heatmap, alpha, 0)
return Image.fromarray(overlay)
|