AustingDong commited on
Commit
3912684
·
1 Parent(s): 9321e89

Update cam.py

Browse files
Files changed (1) hide show
  1. demo/cam.py +4 -6
demo/cam.py CHANGED
@@ -186,6 +186,7 @@ class AttentionGuidedCAMJanus(AttentionGuidedCAM):
186
 
187
 
188
  # Compute mean of gradients
 
189
  grad_weights = grad.mean(dim=-1, keepdim=True)
190
 
191
  print("act shape", act.shape)
@@ -242,12 +243,12 @@ class AttentionGuidedCAMJanus(AttentionGuidedCAM):
242
  print("act_shape:", act.shape)
243
  # print("act1_shape:", act[1].shape)
244
 
245
- act = F.relu(act.mean(dim=1))
246
 
247
 
248
  # Compute mean of gradients
249
  print("grad_shape:", grad.shape)
250
- grad_weights = grad.mean(dim=1)
251
 
252
 
253
  # cam, _ = (act * grad_weights).max(dim=-1)
@@ -371,7 +372,6 @@ class AttentionGuidedCAMLLaVA(AttentionGuidedCAM):
371
  print("act shape", act.shape)
372
  print("grad shape", grad.shape)
373
 
374
- act = F.relu(act)
375
  grad = F.relu(grad)
376
 
377
 
@@ -475,8 +475,8 @@ class AttentionGuidedCAMChartGemma(AttentionGuidedCAM):
475
 
476
  self.model.zero_grad()
477
  # print(outputs_raw)
478
- # loss = self.target_layers[-1].attention_map.sum()
479
  loss = outputs_raw.logits.max(dim=-1).values.sum()
 
480
  loss.backward()
481
 
482
  # get image masks
@@ -531,10 +531,8 @@ class AttentionGuidedCAMChartGemma(AttentionGuidedCAM):
531
  print("act shape", act.shape)
532
  print("grad shape", grad.shape)
533
 
534
- act = F.relu(act)
535
  grad = F.relu(grad)
536
 
537
-
538
  cam = act * grad # shape: [1, heads, seq_len, seq_len]
539
  cam = cam.sum(dim=1) # shape: [1, seq_len, seq_len]
540
 
 
186
 
187
 
188
  # Compute mean of gradients
189
+ print("grad shape:", grad.shape)
190
  grad_weights = grad.mean(dim=-1, keepdim=True)
191
 
192
  print("act shape", act.shape)
 
243
  print("act_shape:", act.shape)
244
  # print("act1_shape:", act[1].shape)
245
 
246
+ act = act.mean(dim=1)
247
 
248
 
249
  # Compute mean of gradients
250
  print("grad_shape:", grad.shape)
251
+ grad_weights = F.relu(grad.mean(dim=1))
252
 
253
 
254
  # cam, _ = (act * grad_weights).max(dim=-1)
 
372
  print("act shape", act.shape)
373
  print("grad shape", grad.shape)
374
 
 
375
  grad = F.relu(grad)
376
 
377
 
 
475
 
476
  self.model.zero_grad()
477
  # print(outputs_raw)
 
478
  loss = outputs_raw.logits.max(dim=-1).values.sum()
479
+
480
  loss.backward()
481
 
482
  # get image masks
 
531
  print("act shape", act.shape)
532
  print("grad shape", grad.shape)
533
 
 
534
  grad = F.relu(grad)
535
 
 
536
  cam = act * grad # shape: [1, heads, seq_len, seq_len]
537
  cam = cam.sum(dim=1) # shape: [1, seq_len, seq_len]
538