deneme / relighting /dataset.py
sakinlesh's picture
Upload 25 files
dd06d6b verified
import glob
import json
import os
import skimage
import numpy as np
from pathlib import Path
from natsort import natsorted
from PIL import Image
from relighting.image_processor import pil_square_image
from tqdm.auto import tqdm
import random
import itertools
from abc import ABC, abstractmethod
class Dataset(ABC):
def __init__(self,
resolution=(1024, 1024),
force_square=True,
return_image_path=False,
return_dict=False,
):
"""
Resoution is (WIDTH, HEIGHT)
"""
self.resolution = resolution
self.force_square = force_square
self.return_image_path = return_image_path
self.return_dict = return_dict
self.scene_data = []
self.meta_data = []
self.boundary_info = []
@abstractmethod
def _load_data_path(self):
pass
def __len__(self):
return len(self.scene_data)
def __getitem__(self, idx):
image = Image.open(self.scene_data[idx])
if self.force_square:
image = pil_square_image(image, self.resolution)
else:
image = image.resize(self.resolution)
if self.return_dict:
d = {
"image": image,
"path": self.scene_data[idx]
}
if len(self.boundary_info) > 0:
d["boundary"] = self.boundary_info[idx]
return d
elif self.return_image_path:
return image, self.scene_data[idx]
else:
return image
class GeneralLoader(Dataset):
def __init__(self,
root=None,
num_samples=None,
res_threshold=((1024, 1024)),
apply_threshold=False,
random_shuffle=False,
process_id = 0,
process_total = 1,
limit_input = 0,
**kwargs,
):
super().__init__(**kwargs)
self.root = root
self.res_threshold = res_threshold
self.apply_threshold = apply_threshold
self.has_meta = False
if self.root is not None:
if not os.path.exists(self.root):
raise Exception(f"Dataset {self.root} does not exist.")
paths = natsorted(
list(glob.glob(os.path.join(self.root, "*.png"))) + \
list(glob.glob(os.path.join(self.root, "*.jpg")))
)
self.scene_data = self._load_data_path(paths, num_samples=num_samples)
if random_shuffle:
SEED = 0
random.Random(SEED).shuffle(self.scene_data)
random.Random(SEED).shuffle(self.boundary_info)
if limit_input > 0:
self.scene_data = self.scene_data[:limit_input]
self.boundary_info = self.boundary_info[:limit_input]
# please keep this one the last, so, we will filter out scene_data and boundary info
if process_total > 1:
self.scene_data = self.scene_data[process_id::process_total]
self.boundary_info = self.boundary_info[process_id::process_total]
print(f"Process {process_id} has {len(self.scene_data)} samples")
def _load_data_path(self, paths, num_samples=None):
if os.path.exists(os.path.splitext(paths[0])[0] + ".json") or os.path.exists(os.path.splitext(paths[-1])[0] + ".json"):
self.has_meta = True
if self.has_meta:
# read metadata
TARGET_KEY = "chrome_mask256"
for path in paths:
with open(os.path.splitext(path)[0] + ".json") as f:
meta = json.load(f)
self.meta_data.append(meta)
boundary = {
"x": meta[TARGET_KEY]["x"],
"y": meta[TARGET_KEY]["y"],
"size": meta[TARGET_KEY]["w"],
}
self.boundary_info.append(boundary)
scene_data = paths
if self.apply_threshold:
scene_data = []
for path in tqdm(paths):
img = Image.open(path)
if (img.size[0] >= self.res_threshold[0]) and (img.size[1] >= self.res_threshold[1]):
scene_data.append(path)
if num_samples is not None:
max_idx = min(num_samples, len(scene_data))
scene_data = scene_data[:max_idx]
return scene_data
@classmethod
def from_image_paths(cls, paths, *args, **kwargs):
dataset = cls(*args, **kwargs)
dataset.scene_data = dataset._load_data_path(paths)
return dataset
class ALPLoader(Dataset):
def __init__(self,
root=None,
num_samples=None,
res_threshold=((1024, 1024)),
apply_threshold=False,
**kwargs,
):
super().__init__(**kwargs)
self.root = root
self.res_threshold = res_threshold
self.apply_threshold = apply_threshold
self.has_meta = False
if self.root is not None:
if not os.path.exists(self.root):
raise Exception(f"Dataset {self.root} does not exist.")
dirs = natsorted(list(glob.glob(os.path.join(self.root, "*"))))
self.scene_data = self._load_data_path(dirs)
def _load_data_path(self, dirs):
self.scene_names = [Path(dir).name for dir in dirs]
scene_data = []
for dir in dirs:
pseudo_probe_dirs = natsorted(list(glob.glob(os.path.join(dir, "*"))))
pseudo_probe_dirs = [dir for dir in pseudo_probe_dirs if "gt" not in dir]
data = [os.path.join(dir, "images", "0.png") for dir in pseudo_probe_dirs]
scene_data.append(data)
scene_data = list(itertools.chain(*scene_data))
return scene_data
class MultiIlluminationLoader(Dataset):
def __init__(self,
root,
mask_probe=True,
mask_boundingbox=False,
**kwargs,
):
"""
@params resolution (tuple): (width, height) - resolution of the image
@params force_square: will add black border to make the image square while keeping the aspect ratio
@params mask_probe: mask the probe with the mask in the dataset
"""
super().__init__(**kwargs)
self.root = root
self.mask_probe = mask_probe
self.mask_boundingbox = mask_boundingbox
if self.root is not None:
dirs = natsorted(list(glob.glob(os.path.join(self.root, "*"))))
self.scene_data = self._load_data_path(dirs)
def _load_data_path(self, dirs):
self.scene_names = [Path(dir).name for dir in dirs]
data = {}
for dir in dirs:
chrome_probes = natsorted(list(glob.glob(os.path.join(dir, "probes", "*chrome*.jpg"))))
gray_probes = natsorted(list(glob.glob(os.path.join(dir, "probes", "*gray*.jpg"))))
scenes = natsorted(list(glob.glob(os.path.join(dir, "dir_*.jpg"))))
with open(os.path.join(dir, "meta.json")) as f:
meta_data = json.load(f)
bbox_chrome = meta_data["chrome"]["bounding_box"]
bbox_gray = meta_data["gray"]["bounding_box"]
mask_chrome = os.path.join(dir, "mask_chrome.png")
mask_gray = os.path.join(dir, "mask_gray.png")
scene_name = Path(dir).name
data[scene_name] = {
"scenes": scenes,
"chrome_probes": chrome_probes,
"gray_probes": gray_probes,
"bbox_chrome": bbox_chrome,
"bbox_gray": bbox_gray,
"mask_chrome": mask_chrome,
"mask_gray": mask_gray,
}
return data
def _mask_probe(self, image, mask):
"""
mask probe with a png file in dataset
"""
image_anticheat = skimage.img_as_float(np.array(image))
mask_np = skimage.img_as_float(np.array(mask))[..., None]
image_anticheat = ((1.0 - mask_np) * image_anticheat) + (0.5 * mask_np)
image_anticheat = Image.fromarray(skimage.img_as_ubyte(image_anticheat))
return image_anticheat
def _mask_boundingbox(self, image, bbox):
"""
mask image with the bounding box for anti-cheat
"""
bbox = {k:int(np.round(v/4.0)) for k,v in bbox.items()}
x, y, w, h = bbox["x"], bbox["y"], bbox["w"], bbox["h"]
image_anticheat = skimage.img_as_float(np.array(image))
image_anticheat[y:y+h, x:x+w] = 0.5
image_anticheat = Image.fromarray(skimage.img_as_ubyte(image_anticheat))
return image_anticheat
def __getitem__(self, scene_name):
data = self.scene_data[scene_name]
mask_chrome = Image.open(data["mask_chrome"])
mask_gray = Image.open(data["mask_gray"])
images = []
for path in data["scenes"]:
image = Image.open(path)
if self.mask_probe:
image = self._mask_probe(image, mask_chrome)
image = self._mask_probe(image, mask_gray)
if self.mask_boundingbox:
image = self._mask_boundingbox(image, data["bbox_chrome"])
image = self._mask_boundingbox(image, data["bbox_gray"])
if self.force_square:
image = pil_square_image(image, self.resolution)
else:
image = image.resize(self.resolution)
images.append(image)
chrome_probes = [Image.open(path) for path in data["chrome_probes"]]
gray_probes = [Image.open(path) for path in data["gray_probes"]]
bbox_chrome = data["bbox_chrome"]
bbox_gray = data["bbox_gray"]
return images, chrome_probes, gray_probes, bbox_chrome, bbox_gray
def calculate_ball_info(self, scene_name):
# TODO: remove hard-coded parameters
ball_data = []
for mtype in ['bbox_chrome', 'bbox_gray']:
info = self.scene_data[scene_name][mtype]
# x-y is top-left corner of the bounding box
# meta file is for 4000x6000 image but dataset is 1000x1500
x = info['x'] / 4
y = info['y'] / 4
w = info['w'] / 4
h = info['h'] / 4
# we scale data to 512x512 image
if self.force_square:
h_ratio = (512.0 * 2.0 / 3.0) / 1000.0 #384 because we have black border on the top
w_ratio = 512.0 / 1500.0
else:
h_ratio = self.resolution[0] / 1000.0
w_ratio = self.resolution[1] / 1500.0
x = x * w_ratio
y = y * h_ratio
w = w * w_ratio
h = h * h_ratio
if self.force_square:
# y need to shift due to top black border
top_border_height = 512.0 * (1/6)
y = y + top_border_height
# Sphere is not circle due to the camera perspective, Need future fix for this
# For now, we use the minimum of width and height
w = int(np.round(w))
h = int(np.round(h))
if w > h:
r = h
x = x + (w - h) / 2.0
else:
r = w
y = y + (h - w) / 2.0
x = int(np.round(x))
y = int(np.round(y))
ball_data.append((x, y, r))
return ball_data
def calculate_bbox_info(self, scene_name):
# TODO: remove hard-coded parameters
bbox_data = []
for mtype in ['bbox_chrome', 'bbox_gray']:
info = self.scene_data[scene_name][mtype]
# x-y is top-left corner of the bounding box
# meta file is for 4000x6000 image but dataset is 1000x1500
x = info['x'] / 4
y = info['y'] / 4
w = info['w'] / 4
h = info['h'] / 4
# we scale data to 512x512 image
if self.force_square:
h_ratio = (512.0 * 2.0 / 3.0) / 1000.0 #384 because we have black border on the top
w_ratio = 512.0 / 1500.0
else:
h_ratio = self.resolution[0] / 1000.0
w_ratio = self.resolution[1] / 1500.0
x = x * w_ratio
y = y * h_ratio
w = w * w_ratio
h = h * h_ratio
if self.force_square:
# y need to shift due to top black border
top_border_height = 512.0 * (1/6)
y = y + top_border_height
w = int(np.round(w))
h = int(np.round(h))
x = int(np.round(x))
y = int(np.round(y))
bbox_data.append((x, y, w, h))
return bbox_data
"""
DO NOT remove this!
This is for evaluating results from Multi-Illumination generated from the old version
"""
def calculate_ball_info_legacy(self, scene_name):
# TODO: remove hard-coded parameters
ball_data = []
for mtype in ['bbox_chrome', 'bbox_gray']:
info = self.scene_data[scene_name][mtype]
# x-y is top-left corner of the bounding box
# meta file is for 4000x6000 image but dataset is 1000x1500
x = info['x'] / 4
y = info['y'] / 4
w = info['w'] / 4
h = info['h'] / 4
# we scale data to 512x512 image
h_ratio = 384.0 / 1000.0 #384 because we have black border on the top
w_ratio = 512.0 / 1500.0
x = x * w_ratio
y = y * h_ratio
w = w * w_ratio
h = h * h_ratio
# y need to shift due to top black border
top_border_height = 512.0 * (1/8)
y = y + top_border_height
# Sphere is not circle due to the camera perspective, Need future fix for this
# For now, we use the minimum of width and height
r = np.max(np.array([w, h]))
x = int(np.round(x))
y = int(np.round(y))
r = int(np.round(r))
ball_data.append((y, x, r))
return ball_data