File size: 14,678 Bytes
dd06d6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import glob
import json
import os
import skimage
import numpy as np
from pathlib import Path
from natsort import natsorted
from PIL import Image
from relighting.image_processor import pil_square_image
from tqdm.auto import tqdm
import random
import itertools
from abc import ABC, abstractmethod

class Dataset(ABC):
    def __init__(self,
                 resolution=(1024, 1024),
                 force_square=True,
                 return_image_path=False,
                 return_dict=False,
        ):
        """
        Resoution is (WIDTH, HEIGHT)
        """
        self.resolution = resolution
        self.force_square = force_square
        self.return_image_path = return_image_path
        self.return_dict = return_dict
        self.scene_data = []
        self.meta_data = []
        self.boundary_info = []
        
    @abstractmethod
    def _load_data_path(self):
        pass

    def __len__(self):
        return len(self.scene_data)

    def __getitem__(self, idx):
        image = Image.open(self.scene_data[idx])
        if self.force_square:
            image = pil_square_image(image, self.resolution)
        else:
            image = image.resize(self.resolution)
        
        if self.return_dict:
            d = {
                "image": image,
                "path": self.scene_data[idx]
            }
            if len(self.boundary_info) > 0:
                d["boundary"] = self.boundary_info[idx]
                
            return d
        elif self.return_image_path:
            return image, self.scene_data[idx]
        else:
            return image

class GeneralLoader(Dataset):
    def __init__(self,
                 root=None,
                 num_samples=None,
                 res_threshold=((1024, 1024)),
                 apply_threshold=False,
                 random_shuffle=False,
                 process_id = 0,
                 process_total = 1,
                 limit_input = 0,
                 **kwargs,
        ):
        super().__init__(**kwargs)
        self.root = root
        self.res_threshold = res_threshold
        self.apply_threshold = apply_threshold
        self.has_meta = False
        
        if self.root is not None:
            if not os.path.exists(self.root):
                raise Exception(f"Dataset {self.root} does not exist.") 
            
            paths = natsorted(
                list(glob.glob(os.path.join(self.root, "*.png"))) + \
                list(glob.glob(os.path.join(self.root, "*.jpg")))
            )
            self.scene_data = self._load_data_path(paths, num_samples=num_samples)
            
            if random_shuffle:
                SEED = 0
                random.Random(SEED).shuffle(self.scene_data)
                random.Random(SEED).shuffle(self.boundary_info)
            
            if limit_input > 0:
                self.scene_data = self.scene_data[:limit_input]
                self.boundary_info = self.boundary_info[:limit_input]
                
            # please keep this one the last, so, we will filter out scene_data and boundary info
            if process_total > 1:
                self.scene_data = self.scene_data[process_id::process_total]
                self.boundary_info = self.boundary_info[process_id::process_total]
                print(f"Process {process_id} has {len(self.scene_data)} samples")

    def _load_data_path(self, paths, num_samples=None):
        if os.path.exists(os.path.splitext(paths[0])[0] + ".json") or os.path.exists(os.path.splitext(paths[-1])[0] + ".json"):
            self.has_meta = True
        
        if self.has_meta:
            # read metadata
            TARGET_KEY = "chrome_mask256"
            for path in paths:
                with open(os.path.splitext(path)[0] + ".json") as f:
                    meta = json.load(f)
                    self.meta_data.append(meta)
                    boundary =  {
                        "x": meta[TARGET_KEY]["x"],
                        "y": meta[TARGET_KEY]["y"],
                        "size": meta[TARGET_KEY]["w"],
                    }
                    self.boundary_info.append(boundary)
                
        
        scene_data = paths
        if self.apply_threshold:
            scene_data = []
            for path in tqdm(paths):
                img = Image.open(path)
                if (img.size[0] >= self.res_threshold[0]) and (img.size[1] >= self.res_threshold[1]):
                    scene_data.append(path)
        
        if num_samples is not None:
            max_idx = min(num_samples, len(scene_data))
            scene_data = scene_data[:max_idx]
        
        return scene_data
    
    @classmethod
    def from_image_paths(cls, paths, *args, **kwargs):
        dataset = cls(*args, **kwargs)
        dataset.scene_data = dataset._load_data_path(paths)
        return dataset

class ALPLoader(Dataset):
    def __init__(self,
                 root=None,
                 num_samples=None,
                 res_threshold=((1024, 1024)),
                 apply_threshold=False,
                 **kwargs,
        ):
        super().__init__(**kwargs)
        self.root = root
        self.res_threshold = res_threshold
        self.apply_threshold = apply_threshold
        self.has_meta = False
        
        if self.root is not None:
            if not os.path.exists(self.root):
                raise Exception(f"Dataset {self.root} does not exist.") 
            
            dirs = natsorted(list(glob.glob(os.path.join(self.root, "*"))))
            self.scene_data = self._load_data_path(dirs)

    def _load_data_path(self, dirs):
        self.scene_names = [Path(dir).name for dir in dirs]

        scene_data = []
        for dir in dirs:
            pseudo_probe_dirs = natsorted(list(glob.glob(os.path.join(dir, "*"))))
            pseudo_probe_dirs = [dir for dir in pseudo_probe_dirs if "gt" not in dir]
            data = [os.path.join(dir, "images", "0.png") for dir in pseudo_probe_dirs]
            scene_data.append(data)

        scene_data = list(itertools.chain(*scene_data))
        return scene_data

class MultiIlluminationLoader(Dataset):
    def __init__(self,
                root, 
                mask_probe=True, 
                mask_boundingbox=False,
                **kwargs,
        ):
        """
        @params resolution (tuple): (width, height) - resolution of the image
        @params force_square: will add black border to make the image square while keeping the aspect ratio
        @params mask_probe: mask the probe with the mask in the dataset
        
        """
        super().__init__(**kwargs)
        self.root = root
        self.mask_probe = mask_probe
        self.mask_boundingbox = mask_boundingbox

        if self.root is not None:
            dirs = natsorted(list(glob.glob(os.path.join(self.root, "*"))))
            self.scene_data = self._load_data_path(dirs)

    def _load_data_path(self, dirs):
        self.scene_names = [Path(dir).name for dir in dirs]

        data = {}
        for dir in dirs:
            chrome_probes = natsorted(list(glob.glob(os.path.join(dir, "probes", "*chrome*.jpg"))))
            gray_probes = natsorted(list(glob.glob(os.path.join(dir, "probes", "*gray*.jpg"))))
            scenes = natsorted(list(glob.glob(os.path.join(dir, "dir_*.jpg"))))

            with open(os.path.join(dir, "meta.json")) as f:
                meta_data = json.load(f)
            
            bbox_chrome = meta_data["chrome"]["bounding_box"]
            bbox_gray = meta_data["gray"]["bounding_box"]

            mask_chrome = os.path.join(dir, "mask_chrome.png")
            mask_gray = os.path.join(dir, "mask_gray.png")

            scene_name = Path(dir).name
            data[scene_name] = {
                "scenes": scenes,
                "chrome_probes": chrome_probes,
                "gray_probes": gray_probes,
                "bbox_chrome": bbox_chrome,
                "bbox_gray": bbox_gray,
                "mask_chrome": mask_chrome,
                "mask_gray": mask_gray,
            }
        return data

    def _mask_probe(self, image, mask):
        """
        mask probe with a png file in dataset
        """
        image_anticheat = skimage.img_as_float(np.array(image))
        mask_np = skimage.img_as_float(np.array(mask))[..., None]
        image_anticheat = ((1.0 - mask_np) * image_anticheat) + (0.5 * mask_np)
        image_anticheat = Image.fromarray(skimage.img_as_ubyte(image_anticheat))
        return image_anticheat
    
    def _mask_boundingbox(self, image, bbox): 
        """
        mask image with the bounding box for anti-cheat
        """
        bbox = {k:int(np.round(v/4.0)) for k,v in bbox.items()}
        x, y, w, h = bbox["x"], bbox["y"], bbox["w"], bbox["h"]
        image_anticheat = skimage.img_as_float(np.array(image))
        image_anticheat[y:y+h, x:x+w] = 0.5
        image_anticheat = Image.fromarray(skimage.img_as_ubyte(image_anticheat))
        return image_anticheat
        
    def __getitem__(self, scene_name):
        data = self.scene_data[scene_name]
        
        mask_chrome = Image.open(data["mask_chrome"])
        mask_gray = Image.open(data["mask_gray"])
        images = []
        for path in data["scenes"]:
            image = Image.open(path)
            if self.mask_probe:
                image = self._mask_probe(image, mask_chrome)
                image = self._mask_probe(image, mask_gray)
            if self.mask_boundingbox:
                image = self._mask_boundingbox(image, data["bbox_chrome"])
                image = self._mask_boundingbox(image, data["bbox_gray"])
                
            if self.force_square:
                image = pil_square_image(image, self.resolution)
            else:
                image = image.resize(self.resolution)
            images.append(image)

        chrome_probes = [Image.open(path) for path in data["chrome_probes"]]
        gray_probes = [Image.open(path) for path in data["gray_probes"]]
        bbox_chrome = data["bbox_chrome"]
        bbox_gray = data["bbox_gray"]
        
        return images, chrome_probes, gray_probes, bbox_chrome, bbox_gray

    
    def calculate_ball_info(self, scene_name):
        # TODO: remove hard-coded parameters
        ball_data = []
        for mtype in ['bbox_chrome', 'bbox_gray']:
            info = self.scene_data[scene_name][mtype]

            # x-y is top-left corner of the bounding box
            # meta file is for 4000x6000 image but dataset is 1000x1500
            x = info['x'] / 4
            y = info['y'] / 4
            w = info['w'] / 4
            h = info['h'] / 4

           
            # we scale data to 512x512 image 
            if self.force_square:
                h_ratio = (512.0 * 2.0 / 3.0) / 1000.0    #384 because we have black border on the top
                w_ratio = 512.0 / 1500.0
            else:
                h_ratio = self.resolution[0] / 1000.0
                w_ratio = self.resolution[1] / 1500.0
                
            x = x * w_ratio
            y = y * h_ratio
            w = w * w_ratio
            h = h * h_ratio

            if self.force_square:
                # y need to shift due to top black border
                top_border_height = 512.0 * (1/6)
                y = y + top_border_height


            # Sphere is not circle due to the camera perspective, Need future fix for this
            # For now, we use the minimum of width and height
            w = int(np.round(w))
            h = int(np.round(h))
            if w > h:
                r = h
                x = x + (w - h) / 2.0
            else:
                r = w 
                y = y + (h - w) / 2.0                
            
            x = int(np.round(x))
            y = int(np.round(y))
            
            ball_data.append((x, y, r))
        
        return ball_data
    
    def calculate_bbox_info(self, scene_name):
        # TODO: remove hard-coded parameters
        bbox_data = []
        for mtype in ['bbox_chrome', 'bbox_gray']:
            info = self.scene_data[scene_name][mtype]

            # x-y is top-left corner of the bounding box
            # meta file is for 4000x6000 image but dataset is 1000x1500
            x = info['x'] / 4
            y = info['y'] / 4
            w = info['w'] / 4
            h = info['h'] / 4

           
            # we scale data to 512x512 image 
            if self.force_square:
                h_ratio = (512.0 * 2.0 / 3.0) / 1000.0    #384 because we have black border on the top
                w_ratio = 512.0 / 1500.0
            else:
                h_ratio = self.resolution[0] / 1000.0
                w_ratio = self.resolution[1] / 1500.0
                
            x = x * w_ratio
            y = y * h_ratio
            w = w * w_ratio
            h = h * h_ratio

            if self.force_square:
                # y need to shift due to top black border
                top_border_height = 512.0 * (1/6)
                y = y + top_border_height


            w = int(np.round(w))
            h = int(np.round(h))             
            x = int(np.round(x))
            y = int(np.round(y))
            
            bbox_data.append((x, y, w, h))
        
        return bbox_data

    """
    DO NOT remove this!
    This is for evaluating results from Multi-Illumination generated from the old version
    """
    def calculate_ball_info_legacy(self, scene_name):
        # TODO: remove hard-coded parameters
        ball_data = []
        for mtype in ['bbox_chrome', 'bbox_gray']:
            info = self.scene_data[scene_name][mtype]

            # x-y is top-left corner of the bounding box
            # meta file is for 4000x6000 image but dataset is 1000x1500
            x = info['x'] / 4
            y = info['y'] / 4
            w = info['w'] / 4
            h = info['h'] / 4

            # we scale data to 512x512 image 
            h_ratio = 384.0 / 1000.0    #384 because we have black border on the top
            w_ratio = 512.0 / 1500.0
            x = x * w_ratio
            y = y * h_ratio
            w = w * w_ratio
            h = h * h_ratio

            # y need to shift due to top black border
            top_border_height = 512.0 * (1/8)

            y = y + top_border_height

            # Sphere is not circle due to the camera perspective, Need future fix for this
            # For now, we use the minimum of width and height
            r = np.max(np.array([w, h]))  

            x = int(np.round(x))
            y = int(np.round(y))
            r = int(np.round(r))

            ball_data.append((y, x, r))

        return ball_data