prithivMLmods commited on
Commit
77532e0
·
verified ·
1 Parent(s): 6ff4015

Create multisource_121.py

Browse files
Files changed (1) hide show
  1. multisource_121.py +73 -0
multisource_121.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ from transformers import AutoImageProcessor, SiglipForImageClassification
4
+ from transformers.image_utils import load_image
5
+ from PIL import Image
6
+ import torch
7
+
8
+ # Load model and processor
9
+ model_name = "prithivMLmods/Multisource-121-DomainNet"
10
+ model = SiglipForImageClassification.from_pretrained(model_name)
11
+ processor = AutoImageProcessor.from_pretrained(model_name)
12
+
13
+ @spaces.GPU
14
+ def multisource_classification(image):
15
+ """Predicts the domain category for an input image."""
16
+ # Convert the input numpy array to a PIL Image and ensure it is in RGB format
17
+ image = Image.fromarray(image).convert("RGB")
18
+
19
+ # Process the image and convert it to model inputs
20
+ inputs = processor(images=image, return_tensors="pt")
21
+
22
+ # Get model predictions without gradient calculations
23
+ with torch.no_grad():
24
+ outputs = model(**inputs)
25
+ logits = outputs.logits
26
+ # Convert logits to probabilities using softmax
27
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
28
+
29
+ # Mapping from class indices to domain labels
30
+ labels = {
31
+ "0": "barn", "1": "baseball_bat", "2": "basket", "3": "beach", "4": "bear",
32
+ "5": "beard", "6": "bee", "7": "bird", "8": "blueberry", "9": "bowtie",
33
+ "10": "bracelet", "11": "brain", "12": "bread", "13": "broccoli", "14": "bus",
34
+ "15": "butterfly", "16": "circle", "17": "cloud", "18": "cruise_ship", "19": "dolphin",
35
+ "20": "dumbbell", "21": "elephant", "22": "eye", "23": "eyeglasses", "24": "feather",
36
+ "25": "fish", "26": "flower", "27": "foot", "28": "frog", "29": "giraffe",
37
+ "30": "goatee", "31": "golf_club", "32": "grapes", "33": "grass", "34": "guitar",
38
+ "35": "hamburger", "36": "hand", "37": "hat", "38": "headphones", "39": "helicopter",
39
+ "40": "hexagon", "41": "hockey_stick", "42": "horse", "43": "hourglass", "44": "house",
40
+ "45": "ice_cream", "46": "jacket", "47": "ladder", "48": "leg", "49": "lipstick",
41
+ "50": "megaphone", "51": "monkey", "52": "moon", "53": "mushroom", "54": "necklace",
42
+ "55": "owl", "56": "panda", "57": "pear", "58": "peas", "59": "penguin",
43
+ "60": "pig", "61": "pillow", "62": "pineapple", "63": "pizza", "64": "pool",
44
+ "65": "popsicle", "66": "rabbit", "67": "rhinoceros", "68": "rifle", "69": "river",
45
+ "70": "sailboat", "71": "sandwich", "72": "sea_turtle", "73": "shark", "74": "shoe",
46
+ "75": "skyscraper", "76": "snorkel", "77": "snowman", "78": "soccer_ball", "79": "speedboat",
47
+ "80": "spider", "81": "spoon", "82": "square", "83": "squirrel", "84": "stethoscope",
48
+ "85": "strawberry", "86": "streetlight", "87": "submarine", "88": "suitcase", "89": "sun",
49
+ "90": "sweater", "91": "sword", "92": "table", "93": "teapot", "94": "teddy-bear",
50
+ "95": "telephone", "96": "tent", "97": "The_Eiffel_Tower", "98": "The_Great_Wall_of_China",
51
+ "99": "The_Mona_Lisa", "100": "tiger", "101": "toaster", "102": "tooth", "103": "tornado",
52
+ "104": "tractor", "105": "train", "106": "tree", "107": "triangle", "108": "trombone",
53
+ "109": "truck", "110": "trumpet", "111": "umbrella", "112": "vase", "113": "violin",
54
+ "114": "watermelon", "115": "whale", "116": "windmill", "117": "wine_glass", "118": "yoga",
55
+ "119": "zebra", "120": "zigzag"
56
+ }
57
+
58
+ # Create a dictionary mapping each label to its corresponding probability (rounded)
59
+ predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
60
+ return predictions
61
+
62
+ # Create Gradio interface
63
+ iface = gr.Interface(
64
+ fn=multisource_classification,
65
+ inputs=gr.Image(type="numpy"),
66
+ outputs=gr.Label(label="Prediction Scores"),
67
+ title="Multisource-121-DomainNet Classification",
68
+ description="Upload an image to classify it into one of 121 domain categories."
69
+ )
70
+
71
+ # Launch the app
72
+ if __name__ == "__main__":
73
+ iface.launch()