prithivMLmods commited on
Commit
6ff4015
·
verified ·
1 Parent(s): 28d72d3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -9
app.py CHANGED
@@ -22,9 +22,9 @@ from alphabet_sign_language_detection import sign_language_classification
22
  from rice_leaf_disease import classify_leaf_disease
23
  from traffic_density import traffic_density_classification
24
  from clip_art import clipart_classification
 
25
 
26
- #Gradio-Theme
27
-
28
  class Seafoam(Base):
29
  def __init__(
30
  self,
@@ -93,8 +93,10 @@ def classify(image, model_name):
93
  return sign_language_classification(image)
94
  elif model_name == "traffic density":
95
  return traffic_density_classification(image)
96
- elif model_name == "clip art": # New option
97
  return clipart_classification(image)
 
 
98
  else:
99
  return {"Error": "No model selected"}
100
 
@@ -104,13 +106,13 @@ def select_model(model_name):
104
  "gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary",
105
  "gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary",
106
  "fashion_mnist": "secondary", "food": "secondary", "bird": "secondary", "leaf disease": "secondary",
107
- "sign language": "secondary", "traffic density": "secondary", "clip art": "secondary" # New model variant
 
108
  }
109
  model_variants[model_name] = "primary"
110
  return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants))
111
 
112
  # Zero-Shot Classification Setup (SigLIP models)
113
-
114
  # Load the SigLIP models and processors
115
  sg1_ckpt = "google/siglip-so400m-patch14-384"
116
  siglip1_model = AutoModel.from_pretrained(sg1_ckpt, device_map="cpu").eval()
@@ -172,7 +174,8 @@ with gr.Blocks(theme=seafoam) as demo:
172
  leaf_disease_btn = gr.Button("Rice Leaf Disease", variant="secondary")
173
  sign_language_btn = gr.Button("Alphabet Sign Language", variant="secondary")
174
  traffic_density_btn = gr.Button("Traffic Density", variant="secondary")
175
- clip_art_btn = gr.Button("Art Classification", variant="secondary") # New button
 
176
 
177
  selected_model = gr.State("age")
178
  gr.Markdown("### Current Model:")
@@ -182,12 +185,12 @@ with gr.Blocks(theme=seafoam) as demo:
182
  buttons = [
183
  gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn,
184
  age_btn, mnist_btn, fashion_mnist_btn, food_btn, bird_btn, leaf_disease_btn,
185
- sign_language_btn, traffic_density_btn, clip_art_btn # Include new button
186
  ]
187
  model_names = [
188
  "gender", "emotion", "dog breed", "deepfake", "gym workout", "waste",
189
  "age", "mnist", "fashion_mnist", "food", "bird", "leaf disease",
190
- "sign language", "traffic density", "clip art" # New model name
191
  ]
192
 
193
  for btn, name in zip(buttons, model_names):
@@ -213,4 +216,4 @@ with gr.Blocks(theme=seafoam) as demo:
213
  siglip2_output = gr.Label(label="SigLIP 2 Output", num_top_classes=3)
214
  zs_run_button.click(fn=infer, inputs=[zs_image_input, zs_text_input], outputs=[siglip1_output, siglip2_output])
215
 
216
- demo.launch()
 
22
  from rice_leaf_disease import classify_leaf_disease
23
  from traffic_density import traffic_density_classification
24
  from clip_art import clipart_classification
25
+ from multisource_121 import multisource_classification # New import
26
 
27
+ # Gradio-Theme
 
28
  class Seafoam(Base):
29
  def __init__(
30
  self,
 
93
  return sign_language_classification(image)
94
  elif model_name == "traffic density":
95
  return traffic_density_classification(image)
96
+ elif model_name == "clip art":
97
  return clipart_classification(image)
98
+ elif model_name == "multisource":
99
+ return multisource_classification(image)
100
  else:
101
  return {"Error": "No model selected"}
102
 
 
106
  "gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary",
107
  "gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary",
108
  "fashion_mnist": "secondary", "food": "secondary", "bird": "secondary", "leaf disease": "secondary",
109
+ "sign language": "secondary", "traffic density": "secondary", "clip art": "secondary",
110
+ "multisource": "secondary" # New model variant
111
  }
112
  model_variants[model_name] = "primary"
113
  return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants))
114
 
115
  # Zero-Shot Classification Setup (SigLIP models)
 
116
  # Load the SigLIP models and processors
117
  sg1_ckpt = "google/siglip-so400m-patch14-384"
118
  siglip1_model = AutoModel.from_pretrained(sg1_ckpt, device_map="cpu").eval()
 
174
  leaf_disease_btn = gr.Button("Rice Leaf Disease", variant="secondary")
175
  sign_language_btn = gr.Button("Alphabet Sign Language", variant="secondary")
176
  traffic_density_btn = gr.Button("Traffic Density", variant="secondary")
177
+ clip_art_btn = gr.Button("Art Classification", variant="secondary")
178
+ multisource_btn = gr.Button("Multi-Source Classification", variant="secondary") # New button
179
 
180
  selected_model = gr.State("age")
181
  gr.Markdown("### Current Model:")
 
185
  buttons = [
186
  gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn,
187
  age_btn, mnist_btn, fashion_mnist_btn, food_btn, bird_btn, leaf_disease_btn,
188
+ sign_language_btn, traffic_density_btn, clip_art_btn, multisource_btn # Include new button
189
  ]
190
  model_names = [
191
  "gender", "emotion", "dog breed", "deepfake", "gym workout", "waste",
192
  "age", "mnist", "fashion_mnist", "food", "bird", "leaf disease",
193
+ "sign language", "traffic density", "clip art", "multisource" # New model name
194
  ]
195
 
196
  for btn, name in zip(buttons, model_names):
 
216
  siglip2_output = gr.Label(label="SigLIP 2 Output", num_top_classes=3)
217
  zs_run_button.click(fn=infer, inputs=[zs_image_input, zs_text_input], outputs=[siglip1_output, siglip2_output])
218
 
219
+ demo.launch()