Spaces:
Running
on
Zero
Running
on
Zero
Create painting_126.py
Browse files- painting_126.py +74 -0
painting_126.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
4 |
+
from transformers.image_utils import load_image
|
5 |
+
from PIL import Image
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# Load model and processor
|
9 |
+
model_name = "prithivMLmods/Painting-126-DomainNet"
|
10 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
11 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
12 |
+
|
13 |
+
@spaces.GPU
|
14 |
+
def painting_classification(image):
|
15 |
+
"""Predicts the painting category for an input image."""
|
16 |
+
# Convert the input numpy array to a PIL image and ensure it is in RGB format
|
17 |
+
image = Image.fromarray(image).convert("RGB")
|
18 |
+
|
19 |
+
# Process the image for the model
|
20 |
+
inputs = processor(images=image, return_tensors="pt")
|
21 |
+
|
22 |
+
# Get predictions from the model without gradient computation
|
23 |
+
with torch.no_grad():
|
24 |
+
outputs = model(**inputs)
|
25 |
+
logits = outputs.logits
|
26 |
+
# Convert logits to probabilities using softmax
|
27 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
28 |
+
|
29 |
+
# Define the label mapping for each class index
|
30 |
+
labels = {
|
31 |
+
"0": "aircraft_carrier", "1": "alarm_clock", "2": "ant", "3": "anvil", "4": "asparagus",
|
32 |
+
"5": "axe", "6": "banana", "7": "basket", "8": "bathtub", "9": "bear",
|
33 |
+
"10": "bee", "11": "bird", "12": "blackberry", "13": "blueberry", "14": "bottlecap",
|
34 |
+
"15": "broccoli", "16": "bus", "17": "butterfly", "18": "cactus", "19": "cake",
|
35 |
+
"20": "calculator", "21": "camel", "22": "camera", "23": "candle", "24": "cannon",
|
36 |
+
"25": "canoe", "26": "carrot", "27": "castle", "28": "cat", "29": "ceiling_fan",
|
37 |
+
"30": "cell_phone", "31": "cello", "32": "chair", "33": "chandelier", "34": "coffee_cup",
|
38 |
+
"35": "compass", "36": "computer", "37": "cow", "38": "crab", "39": "crocodile",
|
39 |
+
"40": "cruise_ship", "41": "dog", "42": "dolphin", "43": "dragon", "44": "drums",
|
40 |
+
"45": "duck", "46": "dumbbell", "47": "elephant", "48": "eyeglasses", "49": "feather",
|
41 |
+
"50": "fence", "51": "fish", "52": "flamingo", "53": "flower", "54": "foot",
|
42 |
+
"55": "fork", "56": "frog", "57": "giraffe", "58": "goatee", "59": "grapes",
|
43 |
+
"60": "guitar", "61": "hammer", "62": "helicopter", "63": "helmet", "64": "horse",
|
44 |
+
"65": "kangaroo", "66": "lantern", "67": "laptop", "68": "leaf", "69": "lion",
|
45 |
+
"70": "lipstick", "71": "lobster", "72": "microphone", "73": "monkey", "74": "mosquito",
|
46 |
+
"75": "mouse", "76": "mug", "77": "mushroom", "78": "onion", "79": "panda",
|
47 |
+
"80": "peanut", "81": "pear", "82": "peas", "83": "pencil", "84": "penguin",
|
48 |
+
"85": "pig", "86": "pillow", "87": "pineapple", "88": "potato", "89": "power_outlet",
|
49 |
+
"90": "purse", "91": "rabbit", "92": "raccoon", "93": "rhinoceros", "94": "rifle",
|
50 |
+
"95": "saxophone", "96": "screwdriver", "97": "sea_turtle", "98": "see_saw", "99": "sheep",
|
51 |
+
"100": "shoe", "101": "skateboard", "102": "snake", "103": "speedboat", "104": "spider",
|
52 |
+
"105": "squirrel", "106": "strawberry", "107": "streetlight", "108": "string_bean",
|
53 |
+
"109": "submarine", "110": "swan", "111": "table", "112": "teapot", "113": "teddy-bear",
|
54 |
+
"114": "television", "115": "the_Eiffel_Tower", "116": "the_Great_Wall_of_China",
|
55 |
+
"117": "tiger", "118": "toe", "119": "train", "120": "truck", "121": "umbrella",
|
56 |
+
"122": "vase", "123": "watermelon", "124": "whale", "125": "zebra"
|
57 |
+
}
|
58 |
+
|
59 |
+
# Map each label to its corresponding probability (rounded)
|
60 |
+
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
61 |
+
return predictions
|
62 |
+
|
63 |
+
# Create Gradio interface for the painting classifier
|
64 |
+
iface = gr.Interface(
|
65 |
+
fn=painting_classification,
|
66 |
+
inputs=gr.Image(type="numpy"),
|
67 |
+
outputs=gr.Label(label="Prediction Scores"),
|
68 |
+
title="Painting-126-DomainNet Classification",
|
69 |
+
description="Upload a painting to classify it into one of 126 categories."
|
70 |
+
)
|
71 |
+
|
72 |
+
# Launch the app
|
73 |
+
if __name__ == "__main__":
|
74 |
+
iface.launch()
|