Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from transformers import AutoImageProcessor, SiglipForImageClassification | |
from transformers.image_utils import load_image | |
from PIL import Image | |
import torch | |
# Load model and processor | |
model_name = "prithivMLmods/Painting-126-DomainNet" | |
model = SiglipForImageClassification.from_pretrained(model_name) | |
processor = AutoImageProcessor.from_pretrained(model_name) | |
def painting_classification(image): | |
"""Predicts the painting category for an input image.""" | |
# Convert the input numpy array to a PIL image and ensure it is in RGB format | |
image = Image.fromarray(image).convert("RGB") | |
# Process the image for the model | |
inputs = processor(images=image, return_tensors="pt") | |
# Get predictions from the model without gradient computation | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
# Convert logits to probabilities using softmax | |
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() | |
# Define the label mapping for each class index | |
labels = { | |
"0": "aircraft_carrier", "1": "alarm_clock", "2": "ant", "3": "anvil", "4": "asparagus", | |
"5": "axe", "6": "banana", "7": "basket", "8": "bathtub", "9": "bear", | |
"10": "bee", "11": "bird", "12": "blackberry", "13": "blueberry", "14": "bottlecap", | |
"15": "broccoli", "16": "bus", "17": "butterfly", "18": "cactus", "19": "cake", | |
"20": "calculator", "21": "camel", "22": "camera", "23": "candle", "24": "cannon", | |
"25": "canoe", "26": "carrot", "27": "castle", "28": "cat", "29": "ceiling_fan", | |
"30": "cell_phone", "31": "cello", "32": "chair", "33": "chandelier", "34": "coffee_cup", | |
"35": "compass", "36": "computer", "37": "cow", "38": "crab", "39": "crocodile", | |
"40": "cruise_ship", "41": "dog", "42": "dolphin", "43": "dragon", "44": "drums", | |
"45": "duck", "46": "dumbbell", "47": "elephant", "48": "eyeglasses", "49": "feather", | |
"50": "fence", "51": "fish", "52": "flamingo", "53": "flower", "54": "foot", | |
"55": "fork", "56": "frog", "57": "giraffe", "58": "goatee", "59": "grapes", | |
"60": "guitar", "61": "hammer", "62": "helicopter", "63": "helmet", "64": "horse", | |
"65": "kangaroo", "66": "lantern", "67": "laptop", "68": "leaf", "69": "lion", | |
"70": "lipstick", "71": "lobster", "72": "microphone", "73": "monkey", "74": "mosquito", | |
"75": "mouse", "76": "mug", "77": "mushroom", "78": "onion", "79": "panda", | |
"80": "peanut", "81": "pear", "82": "peas", "83": "pencil", "84": "penguin", | |
"85": "pig", "86": "pillow", "87": "pineapple", "88": "potato", "89": "power_outlet", | |
"90": "purse", "91": "rabbit", "92": "raccoon", "93": "rhinoceros", "94": "rifle", | |
"95": "saxophone", "96": "screwdriver", "97": "sea_turtle", "98": "see_saw", "99": "sheep", | |
"100": "shoe", "101": "skateboard", "102": "snake", "103": "speedboat", "104": "spider", | |
"105": "squirrel", "106": "strawberry", "107": "streetlight", "108": "string_bean", | |
"109": "submarine", "110": "swan", "111": "table", "112": "teapot", "113": "teddy-bear", | |
"114": "television", "115": "the_Eiffel_Tower", "116": "the_Great_Wall_of_China", | |
"117": "tiger", "118": "toe", "119": "train", "120": "truck", "121": "umbrella", | |
"122": "vase", "123": "watermelon", "124": "whale", "125": "zebra" | |
} | |
# Map each label to its corresponding probability (rounded) | |
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} | |
return predictions | |
# Create Gradio interface for the painting classifier | |
iface = gr.Interface( | |
fn=painting_classification, | |
inputs=gr.Image(type="numpy"), | |
outputs=gr.Label(label="Prediction Scores"), | |
title="Painting-126-DomainNet Classification", | |
description="Upload a painting to classify it into one of 126 categories." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() |