Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from transformers import AutoImageProcessor, SiglipForImageClassification | |
from transformers.image_utils import load_image | |
from PIL import Image | |
import torch | |
# Load model and processor | |
model_name = "prithivMLmods/Mnist-Digits-SigLIP2" | |
model = SiglipForImageClassification.from_pretrained(model_name) | |
processor = AutoImageProcessor.from_pretrained(model_name) | |
def classify_digit(image): | |
"""Predicts the digit in the given handwritten digit image.""" | |
image = Image.fromarray(image).convert("RGB") | |
inputs = processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() | |
labels = { | |
"0": "0", "1": "1", "2": "2", "3": "3", "4": "4", | |
"5": "5", "6": "6", "7": "7", "8": "8", "9": "9" | |
} | |
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} | |
return predictions | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=classify_digit, | |
inputs=gr.Image(type="numpy"), | |
outputs=gr.Label(label="Prediction Scores"), | |
title="MNIST Digit Classification 🔢", | |
description="Upload a handwritten digit image (0-9) to recognize it using MNIST-Digits-SigLIP2." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() |