prithivMLmods commited on
Commit
85aea3e
·
verified ·
1 Parent(s): 08d30fe

Create mnist_digits.py

Browse files
Files changed (1) hide show
  1. mnist_digits.py +43 -0
mnist_digits.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ from transformers import AutoImageProcessor, SiglipForImageClassification
4
+ from transformers.image_utils import load_image
5
+ from PIL import Image
6
+ import torch
7
+
8
+ # Load model and processor
9
+ model_name = "prithivMLmods/Mnist-Digits-SigLIP2"
10
+ model = SiglipForImageClassification.from_pretrained(model_name)
11
+ processor = AutoImageProcessor.from_pretrained(model_name)
12
+
13
+ @spaces.GPU
14
+ def classify_digit(image):
15
+ """Predicts the digit in the given handwritten digit image."""
16
+ image = Image.fromarray(image).convert("RGB")
17
+ inputs = processor(images=image, return_tensors="pt")
18
+
19
+ with torch.no_grad():
20
+ outputs = model(**inputs)
21
+ logits = outputs.logits
22
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
23
+
24
+ labels = {
25
+ "0": "0", "1": "1", "2": "2", "3": "3", "4": "4",
26
+ "5": "5", "6": "6", "7": "7", "8": "8", "9": "9"
27
+ }
28
+ predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
29
+
30
+ return predictions
31
+
32
+ # Create Gradio interface
33
+ iface = gr.Interface(
34
+ fn=classify_digit,
35
+ inputs=gr.Image(type="numpy"),
36
+ outputs=gr.Label(label="Prediction Scores"),
37
+ title="MNIST Digit Classification 🔢",
38
+ description="Upload a handwritten digit image (0-9) to recognize it using MNIST-Digits-SigLIP2."
39
+ )
40
+
41
+ # Launch the app
42
+ if __name__ == "__main__":
43
+ iface.launch()