Callisto-OCR-2B / app.py
prithivMLmods's picture
Update app.py
9fa4a86 verified
raw
history blame
4.2 kB
import gradio as gr
from gender_classification import gender_classification
from emotion_classification import emotion_classification
from dog_breed import dog_breed_classification
from deepfake_vs_real import deepfake_classification
from gym_workout_classification import workout_classification
from augmented_waste_classifier import waste_classification
from age_classification import age_classification
from mnist_digits import classify_digit
from fashion_mnist_cloth import fashion_mnist_classification
from indian_western_food_classify import food_classification
from bird_species import bird_classification
# Main classification function that calls the appropriate model based on selection.
def classify(image, model_name):
if model_name == "gender":
return gender_classification(image)
elif model_name == "emotion":
return emotion_classification(image)
elif model_name == "dog breed":
return dog_breed_classification(image)
elif model_name == "deepfake":
return deepfake_classification(image)
elif model_name == "gym workout":
return workout_classification(image)
elif model_name == "waste":
return waste_classification(image)
elif model_name == "age":
return age_classification(image)
elif model_name == "mnist":
return classify_digit(image)
elif model_name == "fashion_mnist":
return fashion_mnist_classification(image)
elif model_name == "food":
return food_classification(image)
elif model_name == "bird":
return bird_classification(image)
else:
return {"Error": "No model selected"}
# Function to update the selected model and button styles.
def select_model(model_name):
model_variants = {
"gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary",
"gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary",
"fashion_mnist": "secondary", "food": "secondary", "bird": "secondary"
}
model_variants[model_name] = "primary"
return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants))
with gr.Blocks() as demo:
with gr.Sidebar():
gr.Markdown("# SigLIP2 224")
with gr.Row():
age_btn = gr.Button("Age Classification", variant="primary")
gender_btn = gr.Button("Gender Classification", variant="secondary")
emotion_btn = gr.Button("Emotion Classification", variant="secondary")
dog_breed_btn = gr.Button("Dog Breed Classification", variant="secondary")
deepfake_btn = gr.Button("Deepfake vs Real", variant="secondary")
gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary")
waste_btn = gr.Button("Waste Classification", variant="secondary")
mnist_btn = gr.Button("Digit Classify (0-9)", variant="secondary")
fashion_mnist_btn = gr.Button("Fashion MNIST Classification", variant="secondary")
food_btn = gr.Button("Indian/Western Food", variant="secondary")
bird_btn = gr.Button("Bird Species", variant="secondary")
selected_model = gr.State("age")
gr.Markdown("### Current Model:")
model_display = gr.Textbox(value="age", interactive=False)
selected_model.change(lambda m: m, selected_model, model_display)
buttons = [gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn, mnist_btn, fashion_mnist_btn, food_btn, bird_btn]
model_names = ["gender", "emotion", "dog breed", "deepfake", "gym workout", "waste", "age", "mnist", "fashion_mnist", "food", "bird"]
for btn, name in zip(buttons, model_names):
btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons)
with gr.Column():
image_input = gr.Image(type="numpy", label="Upload Image")
analyze_btn = gr.Button("Classify / Predict")
output_label = gr.Label(label="Prediction Scores")
analyze_btn.click(fn=classify, inputs=[image_input, selected_model], outputs=output_label)
demo.launch()