prithivMLmods commited on
Commit
9fa4a86
·
verified ·
1 Parent(s): 55a6126

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -9,6 +9,7 @@ from age_classification import age_classification
9
  from mnist_digits import classify_digit
10
  from fashion_mnist_cloth import fashion_mnist_classification
11
  from indian_western_food_classify import food_classification
 
12
 
13
  # Main classification function that calls the appropriate model based on selection.
14
  def classify(image, model_name):
@@ -32,6 +33,8 @@ def classify(image, model_name):
32
  return fashion_mnist_classification(image)
33
  elif model_name == "food":
34
  return food_classification(image)
 
 
35
  else:
36
  return {"Error": "No model selected"}
37
 
@@ -40,7 +43,7 @@ def select_model(model_name):
40
  model_variants = {
41
  "gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary",
42
  "gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary",
43
- "fashion_mnist": "secondary", "food": "secondary"
44
  }
45
  model_variants[model_name] = "primary"
46
  return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants))
@@ -59,14 +62,15 @@ with gr.Blocks() as demo:
59
  mnist_btn = gr.Button("Digit Classify (0-9)", variant="secondary")
60
  fashion_mnist_btn = gr.Button("Fashion MNIST Classification", variant="secondary")
61
  food_btn = gr.Button("Indian/Western Food", variant="secondary")
 
62
 
63
  selected_model = gr.State("age")
64
  gr.Markdown("### Current Model:")
65
  model_display = gr.Textbox(value="age", interactive=False)
66
  selected_model.change(lambda m: m, selected_model, model_display)
67
 
68
- buttons = [gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn, mnist_btn, fashion_mnist_btn, food_btn]
69
- model_names = ["gender", "emotion", "dog breed", "deepfake", "gym workout", "waste", "age", "mnist", "fashion_mnist", "food"]
70
 
71
  for btn, name in zip(buttons, model_names):
72
  btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons)
 
9
  from mnist_digits import classify_digit
10
  from fashion_mnist_cloth import fashion_mnist_classification
11
  from indian_western_food_classify import food_classification
12
+ from bird_species import bird_classification
13
 
14
  # Main classification function that calls the appropriate model based on selection.
15
  def classify(image, model_name):
 
33
  return fashion_mnist_classification(image)
34
  elif model_name == "food":
35
  return food_classification(image)
36
+ elif model_name == "bird":
37
+ return bird_classification(image)
38
  else:
39
  return {"Error": "No model selected"}
40
 
 
43
  model_variants = {
44
  "gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary",
45
  "gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary",
46
+ "fashion_mnist": "secondary", "food": "secondary", "bird": "secondary"
47
  }
48
  model_variants[model_name] = "primary"
49
  return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants))
 
62
  mnist_btn = gr.Button("Digit Classify (0-9)", variant="secondary")
63
  fashion_mnist_btn = gr.Button("Fashion MNIST Classification", variant="secondary")
64
  food_btn = gr.Button("Indian/Western Food", variant="secondary")
65
+ bird_btn = gr.Button("Bird Species", variant="secondary")
66
 
67
  selected_model = gr.State("age")
68
  gr.Markdown("### Current Model:")
69
  model_display = gr.Textbox(value="age", interactive=False)
70
  selected_model.change(lambda m: m, selected_model, model_display)
71
 
72
+ buttons = [gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn, mnist_btn, fashion_mnist_btn, food_btn, bird_btn]
73
+ model_names = ["gender", "emotion", "dog breed", "deepfake", "gym workout", "waste", "age", "mnist", "fashion_mnist", "food", "bird"]
74
 
75
  for btn, name in zip(buttons, model_names):
76
  btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons)